МИНПРОСВЕЩЕНИЯ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Волгоградский государственный социально-педагогический университет» Институт технологии, экономики и сервиса Кафедра технологии, экономики образования и сервиса

•	«УТВІ	ЕРЖДАЮ»
Прорек	тор по	учебной работе
		Ю.А. Жадаев
« <u>30</u> »_	мая	_ 2022 г.

Основы механизации, автоматизации и робототехники

Программа учебной дисциплины

Направление 44.03.01 «Педагогическое образование» Профиль «Технологическое образование»

заочная форма обучения

Волгоград 2022

Обсуждена на заседании кафедры		і, экономики об	разования и	сервиса
« <u>16</u> » <u>мая</u> 2022 г., протокол	№ 8			
Заведующий кафедрой	пись)	Ю.А. Жадаев (зав. кафедрой)	« <u>16</u> » <u>м</u> (дат	<u>ая</u> 2022 г.
Рассмотрена и одобрена на засед сервиса « <u>17</u> » <u>мая</u> 2022 г., п			ута технолог	гии, экономики
Председатель учёного совета _ А	.В. Шохнех (директор)	(подпись)	« <u>17</u> »	<u>мая</u> 2022 г.
Утверждена на заседании учёног «30» мая 2022 г., протокол М		БОУ ВО «ВГСП	ΣУ»	
Отметки о внесении изменений	і́ в программ	му:		
Лист изменений №	(подпись	ь) (руководи	тель ОПОП)	(дата)
Лист изменений №	(подпись	s) (руководи [*]	тель ОПОП)	(дата)
Лист изменений №	(подпись	.) (руководи [*]	тель ОПОП)	(дата)

И

Разработчики:

Колышев Олег Юрьевич, старший преподаватель кафедры технологии, экономики образования и сервиса ФГБОУ ВО «ВГСПУ».

Программа дисциплины «Основы механизации, автоматизации и робототехники» соответствует требованиям ФГОС ВО по направлению подготовки 44.03.01 «Педагогическое образование» (утверждён приказом Министерства образования и науки РФ от 22 февраля 2018 г. N 121) и базовому учебному плану по направлению подготовки 44.03.01 «Педагогическое образование» (профиль «Технологическое образование»), утверждённому Учёным советом ФГБОУ ВО «ВГСПУ» (от 30 мая 2022 г., протокол № 13).

1. Цель освоения дисциплины

Сформировать систему компетенций будущего учителя технологии в процессе изучения основ механизации и автоматизации современного производства для решения задач профессиональной деятельности.

2. Место дисциплины в структуре ОПОП

Дисциплина «Основы механизации, автоматизации и робототехники» относится к базовой части блока дисциплин.

Для освоения дисциплины «Основы механизации, автоматизации и робототехники» обучающиеся используют знания, умения, способы деятельности и установки, сформированные в ходе изучения дисциплин «Инженерная и компьютерная графика», «История науки и техники», «Материаловедение и новые материалы», «Прикладная механика», «Техническая эстетика и дизайн», «Технологии обработки материалов и пищевых продуктов», «Художественная обработка материалов», «Экологические основы производства и защита окружающей среды», «Обустройство и дизайн дома», «Экономика домашнего хозяйства», прохождения практики «Учебная (проектно-техническая) практика».

Освоение данной дисциплины является необходимой основой для последующего изучения дисциплин «3D-моделирование и прототипирование», «Методика обучения и воспитания по профилю Технология», «Мехатроника и робототехника обязательно раздел "Образовательная робототехника"», «Основы исследований в технологическом образовании», «Передовые производственные технологии», «Перспективные методы обучения технологии», «Современное оборудование в технологическом образовании», «Техническое творчество и основы проектирования», «Домашняя экономика», «Ремонт и эксплуатация дома», прохождения практики «Производственная (педагогическая по технологии) практика».

3. Планируемые результаты обучения

В результате освоения дисциплины выпускник должен обладать следующими компетенциями:

- способен осваивать и использовать теоретические знания и практические умения и навыки в предметной области при решении профессиональных задач (ПК-1);
- способен планировать и применять технологические процессы изготовления объектов труда в профессиональной педагогической деятельности (ППК-1).

В результате изучения дисциплины обучающийся должен:

знать

- основные меры по повышению производительности производства;
- общие сведения об автоматах и автоматических линиях;
- общие сведения о гибких производственных системах:
- факторы технологических процессов автоматизированного производства;

уметь

– реализовывать полученные теоретические знания в профессиональной деятельности;

владеть

- принципами разработки технологических процессов в автоматизированных производственных системах;
- технологические методами и маршрутами обработки в условиях автоматизированного производства;
 - критериями выбора деталей для обработки в гибких производственных системах;
- правилами отработки конструкции изделия на технологичность для условий автоматической обработки и сборки.

4. Объём дисциплины и виды учебной работы

Dryg ywefyydd acforyy	Всего	Семестры
Вид учебной работы	часов	3з / Зл
Аудиторные занятия (всего)	28	14 / 14
В том числе:		
Лекции (Л)	8	4 / 4
Практические занятия (ПЗ)	20	10 / 10
Лабораторные работы (ЛР)	_	-/-
Самостоятельная работа	112	58 / 54
Контроль	4	-/4
Вид промежуточной аттестации		− / 3 ЧО
Общая трудоемкость часы	144	72 / 72
зачётные единицы	4	2 / 2

5. Содержание дисциплины

5.1. Содержание разделов дисциплины

№	Наименование раздела	Содержание раздела дисциплины		
Π/Π	дисциплины			
1	Автоматизация	Производительность и эффективность производства.		
	производства	Производительность машин и труда. Основные мер		
		по повышению производительности производства.		
		Экономическая эффективность и прогрессивность		
		новой техники и технологий. Производство,		
		производственный и технологический процессы. Типы		
		и виды производства. Основные преимущества		
	автоматизации производства. Основные поняти			
		определения автоматизации. Направления		
	автоматизации производства. Основные принц			
		технологических процессов в автоматизированных		
		производственных системах автоматизированного		
		производства. Общие сведения об автоматах и		
		автоматических линиях. Машина. Рабочий цикл.		
		Автомат. Полуавтомат. Автоматическая линия.		
		Автоматический цех. Машины-автоматы на		
		производстве. Автоматизация рабочего цикла машины.		
		Универсальные станки с ручным управлением.		
		Специализированные и специальные автоматы и		
		полуавтоматы. Агрегатные станки. Станки с числовым		
		программным управлением. Автоматические линии на		
		производстве. Автоматизация системы машин.		

		VOMIOUODICA ARTOMATHUOGENEE HUHUY VA APPARATENTE
		Компоновка автоматических линий из агрегатных
		станков. Технологические методы и маршруты
		обработки.
2	Автоматизированные системы управления	Назначение автоматизированных систем управления станками и оборудованием. Функциональные принципы построения автоматизированной системы управления. Неавтоматическая следящая система. Автоматические следящие системы. Копировальные системы. Системы числового программного управления. Микропроцессоры и мини-ЭВМ в типовых структурах ЧПУ. Команды, в системах программного управлении. Кодирование перемещений. Выбор системы программного управления. Классификация системы управления станков-автоматов и автоматических линий. Роторные конвейерные линии на производстве. Особенности
		применения роторных машин и роторных линий. Категории механизмов технологического ротора. Классы систем роторных машин. Направления развития технологических роторных автоматов и
		развития технологических роторных автоматов и автоматических линий.
3	Гибкие производственные	Гибкое производство — новая концепция
	системы	автоматизации производства. Сущность концепции
		гибкого производства. Управление гибким
		производством. Основные термины и показатели
		гибких производственных систем (ГПС). Степень
		автоматизации. Степень гибкости и уровень
		интеграции. Числовое программное управление. Гибкий производственный модуль. Гибкая
		производственная система. Гибкая
		автоматизированная линия. Преимущества ГПС и
		проблемы их внедрения. Основные преимущества ГПС: увеличение мобильности производства,
		увеличение фондоотдачи производства, влияние роста
		производительности труда. ГПС в
		механообрабатывающем производстве. Анализ
		внедрения ГПС в разных странах. Применение ГПС в
		машиностроении. Применение ГПС в
		специализированном производстве, многономенклатурном производстве, широко-
		номенклатурном производстве, единичном и опытно-
		экспериментальном производстве. Выбор деталей для
		изготовления в ГПС и отработка их на
		технологичность. Основные критерии выбора деталей
		для обработки в гибких производственных системах и
		их характеристика. Типовые гибкие производственные модули механообработки. Общее представление о
		гибких производственных модулях (ГПМ). Гибкий
		сборочный модуль. Техническая, организационная и
		экономическая эффективность внедрения ГПС.
4	Технологические процессы	Виды технологических процессов. Факторы
	и системы	технологических процессов автоматизированного

автоматизированного
производства

производства. Проектирование технологических процессов в условиях автоматизированного производства. Технологический контроль и технологичность конструкции изделия. Формы технологического контроля конструкторской документации. Правила отработки конструкции изделия на технологичность для условий автоматической сборки. Точностные требования к конструкции. Методы автоматической сборки. Автоматизация контроля на производстве. Понятие контроля, классификация организационнотехнического контроля. Погрешности измерения: грубые, систематические, случайные, погрешности установки. Пассивный и активный контроль. Понятия автоматическое контрольное устройство, автомат активного контроля, автомат пассивного контроля. Контрольные и контрольно-сортировочные автоматы и их применение. Измерительные станции. Транспортирующие устройства. Сортировочные устройства. Автоматическая сигнализация и защита. Виды автоматической сигнализации: командная сигнализация, контрольная технологическая сигнализация, предупредительная сигнализация, аварийная сигнализация. Автоматизация транспортноскладских производственных систем. Место и роль складов в современном производстве. Классификация складов. Связи складов с производственными участками и промышленным транспортом. Склад, как неотъемлемая часть общего технологического процесса производства. Автоматизация складских работ. Технологические операции при выдаче со склада полуфабрикатов и заготовок. Оборудование автоматических складов. Штабелирующее оборудование. Устройства для перемещения и перегрузки грузов.

5.2. Количество часов и виды учебных занятий по разделам дисциплины

No॒	Наименование раздела	Лекц.	Практ.	Лаб.	CPC	Всего
Π/Π	дисциплины		зан.	зан.		
1	Автоматизация производства	2	5	_	28	35
2	Автоматизированные системы	2	5	_	28	35
	управления					
3	Гибкие производственные	2	5	_	28	35
	системы					
4	Технологические процессы и	2	5	_	28	35
	системы автоматизированного					
	производства					

6. Перечень основной и дополнительной учебной литературы

6.1. Основная литература

- 1. Схиртладзе, А. Г. Автоматизация технологических процессов и производств: учебник / А. Г. Схиртладзе, А. В. Федотов, В. Г. Хомченко. 2-е изд. Саратов: Ай Пи Эр Медиа, 2019. 459 с. ISBN 978-5-4486-0574-1. Текст: электронный // Электроннобиблиотечная система IPR BOOKS: [сайт]. URL: http://www.iprbookshop.ru/83341.html.
- 2. Молдабаева, М. Н. Автоматизация технологических процессов и производств: учебное пособие / М. Н. Молдабаева. Москва, Вологда: Инфра-Инженерия, 2019. 224 с. ISBN 978-5-9729-0330-6. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: http://www.iprbookshop.ru/86574.html.
- 3. Автоматизация технологических процессов и производств: учебное пособие / И. А. Елизаров, В. А. Погонин, В. Н. Назаров, А. А. Третьяков. Тамбов: Тамбовский государственный технический университет, ЭБС АСВ, 2018. 226 с. ISBN 978-5-8265-1920-2. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: http://www.iprbookshop.ru/92659.html.
- 4. Кулаков, Д. Б. Роботы и робототехника: лабораторный практикум: учебное пособие / Д. Б. Кулаков, Б. Б. Кулаков. Москва: Российский университет дружбы народов, 2018. 124 с. ISBN 978-5-209-07506-6. Текст: электронный // Электронно-библиотечная система IPR BOOKS: [сайт]. URL: http://www.iprbookshop.ru/91065.html.
- 5. Латышенко, К. П. Автоматизация измерений, испытаний и контроля : учебное пособие / К. П. Латышенко. 2-е изд. Саратов : Вузовское образование, 2019. 307 с. ISBN 978-5-4487-0371-3. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/79612.html.

6.2. Дополнительная литература

- 1. Киселёв, М. М. Робототехника в примерах и задачах : курс программирования механизмов и роботов / М. М. Киселёв, М. М. Киселёв. Москва : СОЛОН-ПРЕСС, 2017. 136 с. ISBN 978-5-91359-235-4. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/80564.html.
- 2. Жигалова, Е. Ф. Автоматизация конструкторского и технологического проектирования : учебное пособие / Е. Ф. Жигалова. Томск : Томский государственный университет систем управления и радиоэлектроники, 2016. 201 с. ISBN 2227-8397. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/72067.html.
- 3. Пиляев, С. Н. Автоматизация технологических процессов : учебное пособие для студентов высших учебных заведений, обучающихся по направлению 35.03.06 «Агроинженерия» / С. Н. Пиляев, Д. Н. Афоничев, В. А. Черников. Воронеж : Воронежский Государственный Аграрный Университет им. Императора Петра Первого, 2016. 241 с. ISBN 2227-8397. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/72645.html.
- 4. Сырецкий, Г. А. Автоматизация технологических процессов и производств. Лабораторный практикум. Часть 1 : учебно-методическое пособие / Г. А. Сырецкий. Новосибирск : Новосибирский государственный технический университет, 2012. 116 с. ISBN 978-5-7782-1987-8. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/45350.html.
- 5. Сырецкий, Г. А. Автоматизация технологических процессов и производств. Часть 2 : лабораторный практикум / Г. А. Сырецкий. Новосибирск : Новосибирский государственный технический университет, 2014. 80 с. ISBN 978-5-7782-2504-6. Текст : электронный // Электронно-библиотечная система IPR BOOKS : [сайт]. URL: http://www.iprbookshop.ru/45351.html.

7. Ресурсы Интернета

Перечень ресурсов Интернета, необходимых для освоения дисциплины:

- 1. Электронная библиотечная система IPRbooks (http://www.iprbookshop.ru).
- 2. Сайт научной электронной библиотеки eLlibrary. URL: http://elibrary.ru.
- 3. Единая коллекция цифровых образовательных ресурсов. URL: http://school-collection.edu.ru.

8. Информационные технологии и программное обеспечение

Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем (при необходимости):

- 1. Технологии обработки текстовой информации.
- 2. Технологии обработки графической информации.
- 3. Технологии поиска информации в Интернете.
- 4. Офисный пакет Open Office (Libre Office), редактор растровой графики Gimp.
- 5. Интернет-браузер Google Chrome.

9. Материально-техническая база

Для проведения учебных занятий по дисциплине «Основы механизации, автоматизации и робототехники» необходимо следующее материально-техническое обеспечение:

- 1. Учебная аудитория для проведения лекций с комплектом мультимедийного презентационного оборудования.
- 2. Учебная аудитория для проведения лабораторных работ с комплектом учебного оборудования и наглядных пособий.
 - 3. Компьютерный класс с доступом к сети Интернет.
 - 4. Аудитория для проведения самостоятельной работы студентов.

10. Методические указания для обучающихся по освоению дисциплины

Дисциплина «Основы механизации, автоматизации и робототехники» относится к базовой части блока дисциплин. Программой дисциплины предусмотрено чтение лекций и проведение практических занятий. Промежуточная аттестация проводится в форме аттестации с оценкой, .

Лекционные занятия направлены на формирование глубоких, систематизированных знаний по разделам дисциплины. В ходе лекций преподаватель раскрывает основные, наиболее сложные понятия дисциплины, а также связанные с ними теоретические и практические проблемы, даёт рекомендации по практическому освоению изучаемого материала. В целях качественного освоения лекционного материала обучающимся рекомендуется составлять конспекты лекций, использовать эти конспекты при подготовке к практическим занятиям, промежуточной и итоговой аттестации.

Практические занятия являются формой организации педагогического процесса, направленной на углубление научно-теоретических знаний и овладение методами работы, в процессе которых вырабатываются умения и навыки выполнения учебных действий в сфере изучаемой науки. Практические занятия предполагают детальное изучение обучающимися отдельных теоретических положений учебной дисциплины. В ходе практических занятий формируются умения и навыки практического применения теоретических знаний в конкретных ситуациях путем выполнения поставленных задач, развивается научное мышление и речь, осуществляется контроль учебных достижений обучающихся.

При подготовке к практическим занятиям необходимо ознакомиться с теоретическим

материалом дисциплины по изучаемым темам — разобрать конспекты лекций, изучить литературу, рекомендованную преподавателем. Во время самого занятия рекомендуется активно участвовать в выполнении поставленных заданий, задавать вопросы, принимать участие в дискуссиях, аккуратно и своевременно выполнять контрольные задания.

Контроль за качеством обучения и ходом освоения дисциплины осуществляется на основе рейтинговой системы текущего контроля успеваемости и промежуточной аттестации студентов. Рейтинговая система предполагает 100-балльную оценку успеваемости студента по учебной дисциплине в течение семестра, 60 из которых отводится на текущий контроль, а 40 — на промежуточную аттестацию по дисциплине. Критериальная база рейтинговой оценки, типовые контрольные задания, а также методические материалы по их применению описаны в фонде оценочных средств по дисциплине, являющемся приложением к данной программе.

11. Учебно-методическое обеспечение самостоятельной работы

Самостоятельная работа обучающихся является неотъемлемой частью процесса обучения в вузе. Правильная организация самостоятельной работы позволяет обучающимся развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, способствует формированию навыков совершенствования профессионального мастерства.

Самостоятельная работа обучающихся во внеаудиторное время включает в себя подготовку к аудиторным занятиям, а также изучение отдельных тем, расширяющих и углубляющих представления обучающихся по разделам изучаемой дисциплины. Такая работа может предполагать проработку теоретического материала, работу с научной литературой, выполнение практических заданий, подготовку ко всем видам контрольных испытаний, выполнение творческих работ.

Учебно-методическое обеспечение для самостоятельной работы обучающихся по дисциплине представлено в рабочей программе и включает в себя:

- рекомендуемую основную и дополнительную литературу;
- информационно-справочные и образовательные ресурсы Интернета;
- оценочные средства для проведения текущего контроля и промежуточной аттестации по дисциплине.

Конкретные рекомендации по планированию и проведению самостоятельной работы по дисциплине «Основы механизации, автоматизации и робототехники» представлены в методических указаниях для обучающихся, а также в методических материалах фондов оценочных средств.

12. Фонд оценочных средств

Фонд оценочных средств, включающий перечень компетенций с указанием этапов их формирования, описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания, типовые контрольные задания и методические материалы является приложением к программе учебной дисциплины.