МИНПРОСВЕЩЕНИЯ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Волгоградский государственный социально-педагогический университет» Институт технологии, экономики и сервиса Кафедра технологии, экономики образования и сервиса

•	«УТВЕР	ЖДАЮ»
Прорек	тор по у	чебной работе
		Ю.А. Жадаев
« <u>29</u> »_	марта	_ 2021 г.

Перспективные материалы и технологии

Программа учебной дисциплины

Направление 44.03.01 «Педагогическое образование» Профиль «Технологическое образование»

заочная форма обучения

Обсуждена на заседании кафед	ры технологи	и, экономики обј	разования	и сервиса
« <u>19</u> » февраля 2021 г., прот	гокол № 6			
Заведующий кафедрой	подпись)	Ю.А. Жадаев (зав. кафедрой)		<u>евраля</u> 2021 г. _(дата)
Рассмотрена и одобрена на засе сервиса « <u>19</u> » февраля 2021	•	•	/та техноло	огии, экономики і
Председатель учёного совета _	А.В. Шохнех (директор)	(подпись)	<u> </u>	февраля 2021 г
Утверждена на заседании учён « 29 » марта 2021 г., проток		БОУ ВО «ВГСП	У»	
Отметки о внесении изменен	ий в програм	му:		
Лист изменений №	(подпис	ть) (руководит	тель ОПОП)	(дата)
Лист изменений №	(подпис	ть) (руководит	тель ОПОП)	(дата)
Лист изменений №	(подпис	вь) (руководит	тель ОПОП)	(дата)

Разработчики:

Кисляков Виталий Викторович, кандидат педагогических наук, доцент кафедры технологии, экономики образования и сервиса $\Phi\Gamma EOY$ BO «ВГСПУ».

Программа дисциплины «Перспективные материалы и технологии» соответствует требованиям ФГОС ВО по направлению подготовки 44.03.01 «Педагогическое образование» (утверждён приказом Министерства образования и науки РФ от 22 февраля 2018 г. N 121) и базовому учебному плану по направлению подготовки 44.03.01 «Педагогическое образование» (профиль «Технологическое образование»), утверждённому Учёным советом ФГБОУ ВО «ВГСПУ» (от 29 марта 2021 г., протокол № 6).

1. Цель освоения дисциплины

Сформировать систему компетенций будущего учителя технологии для решения педагогических и культурно-просветительских задач в области современных технологических методов обработки, и использования конструкционных и специальных материалов.

2. Место дисциплины в структуре ОПОП

Дисциплина «Перспективные материалы и технологии» относится к базовой части блока дисциплин.

Для освоения дисциплины «Перспективные материалы и технологии» обучающиеся используют знания, умения, способы деятельности и установки, сформированные в ходе изучения дисциплин «Возрастная анатомия, физиология и гигиена», «Графика», «Детали машин и основы конструирования», «Домашняя экономика и основы предпринимательской деятельности», «История науки и техники», «Конвергентные технологии в технологическом образовании», «Машиностроительное черчение», «Обустройство и дизайн дома», «Основы материаловедения», «Основы стандартизации, метрологии и сертификации», «Основы творческо-конструкторской деятельности», «Прикладная механика», «Техническая эстетика и дизайн», «Технологии обработки конструкционных материалов», «Технологии современного производства», «Технологическое оборудование и бытовая техника», «Экологические основы производства и защита окружающей среды», «Конструирование и моделирование швейных изделий», «Технологические и транспортные машины», «Технологический практикум по обработке конструкционных материалов», «Технологический практикум по обработке тканей и пищевых продуктов», прохождения практик «Производственная (исследовательская) практика», «Производственная (педагогическая) практика», «Учебная (научно-исследовательская) практика», «Учебная (производственно-технологическая) практика».

Освоение данной дисциплины является необходимой основой для последующего изучения дисциплин «Основы исследований в технологическом образовании», «Декоративно-оформительское искусство», «Декоративно-прикладное творчество», «Ремонт и эксплуатация дома», «Художественная обработка материалов», прохождения практик «Производственная (педагогическая) практика», «Производственная практика (научно-исследовательская работа)».

3. Планируемые результаты обучения

В результате освоения дисциплины выпускник должен обладать следующими компетенциями:

- способен осуществлять педагогическую деятельность на основе специальных научных знаний (ОПК-8);
 - способен применять предметные знания в образовательном процессе (ПК-3).

В результате изучения дисциплины обучающийся должен:

знать

– безотходные и материалосберегающие технологии и их перспективность, специальные виды литья, улучшающие качество изделий и условия литейного производства, электрофизические, электрохимические и электроэрозионные методы обработки,

современные способы сварки с использованием плазмы, электронного луча, лазера, ультразвука и т.п;

- основы порошковой металлургии, порошковые материалы и их назначение, высокочистые и композиционные материалы, области их применения;
- древесные материалы, свойства, способы обработки, защиты и отделки древесины, различные группы неметаллических материалов: пластмассы, резинотехнические изделия, лакокрасочные и клеящие материалы; их получение, свойства и технологии обработки;
- способы защиты от коррозии, технические устройства, применяемые в разных областях деятельности человека;

уметь

- выбрать конструкционный материал для проведении занятий по технологии в школе в зависимости от темы урока;
- организовать информацию о достижении науки и техники в области новых технологий и материалов;
- осуществлять профориентационную работу среди учащихся по сознательному выбору будущей специальности на основе знаний о перспективных материалах и технологий;
- решать простые, наиболее часто встречающиеся задачи теоретического и практического характера;

владеть

– актуализированными и закрепленными базовыми понятиями и приемами по разделам дисциплины, в том числе с использованием средств ИТ.

4. Объём дисциплины и виды учебной работы

Programa programa	Всего	Семестры
Вид учебной работы	часов	4л
Аудиторные занятия (всего)	22	22
В том числе:		
Лекции (Л)	6	6
Практические занятия (ПЗ)	10	10
Лабораторные работы (ЛР)	6	6
Самостоятельная работа	82	82
Контроль	4	4
Вид промежуточной аттестации		3ЧО
Общая трудоемкость часы	108	108
зачётные единицы	3	3

5. Содержание дисциплины

5.1. Содержание разделов дисциплины

No	Наименование раздела	Содержание раздела дисциплины		
Π/Π	дисциплины			
1	Безотходные и	1.1. Сырье и экономия сырья. Первичное и вторичное		
	материалосберегающие	сырье. История материалов и технологий. Требования		
	технологии	к материалам и технологиям. Прямое восстановление		
		железа из руд: конструкция шахтной печи и		
		технология получения губчатого железа. 1.2. Способы		
		повышения качества стали. Внепечное рафинирование:		

		вакуумирование в ковше и струе, циркуляционное
		вакуумирование, обработка синтетическим шлаком.
		Переплавные процессы: электрошлаковый, вакуумно-
		дуговой, электронно-лучевой, плазменно-дуговой. 1.3.
		Современные технологии: электронно-лучевая
		обработка, плазменная обработка, ультразвуковая
		обработка, высокоскоростная и лазерная технология.
		Сравнительный анализ современных технологий. 1.4.
		Современные способы сварки: диффузионная сварка,
		сварка в защитных газах, термитная сварка и т.д.
		Специальные виды литья. Литье в металлические
		формы: литье в кокиль, литье под давлением;
		центробежное литье; литье в оболочковые формы и по
		выплавляемым моделям. Нанесение жаростойких и
		износостойких покрытий. Наплавка: ручная и
		плазменно-порошковая. Напыление: электродуговая и
	П	газовая металлизация.
2	Перспективные	2.1. Основы порошковой металлургии. Из истории
	металлические материалы и	порошковой металлургии. Производство
	технология получения	металлических порошков: физико-механические и
	изделий из них	физико-химические способы. Форма порошков,
		технологические свойства порошков. Формование
		порошков: статическое, прерывное и непрерывное
		прессование, гидростатическое и взврывное
		прессование, мундштучное прессование и прокатка
		порошков. Спекание порошков в твердой и жидкой
		фазе. Порошковые материалы: высокотемпературные,
		твердые сплавы, алмазно-металлические, пористые,
		фрикционные, антифрикционные и т.д. 2.2
		Композиционные материалы: дисперсно-упрочненные,
		волокнистые, слоистые. Виды и свойства волокон, как
		упрочнителей. Композиты на металлической и
		неметаллической основе. Высокочистые металлы и
		области их применения. Способы получения
		высокочистых металлов: зонная плавка, вытягивание
		монокристалла из расплава и т.д. Полупроводниковые
		материалы. 2.3. Сверхпроводники и аморфные сплавы.
		История сверхпроводимости. Свойства
		сверхпроводников и их применение. Аморфные
		металлические сплавы, их свойства и применение.
		Технология получения аморфных сплавов:
		сверхбыстрая закалка разбрызгиванием, методом литья
		_ = = = = = = = = = = = = = = = = = = =
2	2. Потоголично	с односторонним и многосторонним охлаждением.
3	3. Перспективные	3.1. Строение и свойства древесины. Макростроение
	неметаллические	древесины, химический состав, свойства и применение
	материалы и технология	древесины. Виды древесных материалов: прессованная
	получения изделий из них	древесина, пиломатериалы, древесные полуфабрикаты,
		клееная древесина и древопластики. Пороки
		древесины и способы защиты древесины, способы
		обработки и отделки древесины. Преимущества и
		недостатки древесины. 3.2. Пластмассы и технология
		переработки их в изделия. Полимеры, их строение и

свойства. Состав пластмасс: связующие, наполнитель, пластификатор, катализатор, краситель. Виды пластмасс: термопластмассы, реактопласты и газонаполненные пластмассы, их свойства и применение. Технология переработки пластмасс в вязко-текучем, высоко-эластичном и стеклообразном состояниях. Преимущества и недостатки пластмасс. 3.3. Резино-технические материалы. Состав резины: мягчитель, каучук, сера, краситель, наполнитель, растворитель. Технология получения резиновых смесей. Способы вулканизации. Виды резины и их применение. 3.4. Стеклянные материалы. Состав стекла: основные и вспомогательные материалы. Технология варки стекла. Способы получения изделий из стекла. Виды стекла: строительное, бытовое, техническое, и применение. 3.5. Лакокрасочные и клеящие материалы. Свойства и технология обработки. Состав лакокрасочных материалов (ЛКМ): пленкообразующие вещества, растворители, пигменты, наполнители, сиккативы. Виды ЛКМ – лаки, эмали и краски. Назначение и применение ЛКМ. Технология нанесения ЛКМ. Состав клея: растворитель, наполнитель, пластификатор, отвердитель. Классификация клеев: неорганические, органические и элементоорганические. Технология склеивания. 4 Электрофизические и 4.1. Коррозия и методы борьбы с ней. электрохимические методы Электрофизические методы: электроискровая, обработки (ЭФЭХ). электроимпульсная, Электрохимические методы: Коррозия и методы защиты полирование, электроабразивная, размерная обработка. от нее Анодно-механическая обработка. Коррозия и защита от нее. Сущность коррозии. Виды коррозии и коррозионных разрушений. Способы защиты от коррозии: легирование, покрытия, обработка среды, электрохимическая защита. Виды покрытий: химические, металлические и неметаллические.

5.2. Количество часов и виды учебных занятий по разделам дисциплины

No	Наименование раздела	Лекц.	Практ.	Лаб.	CPC	Всего
Π/Π	дисциплины		зан.	зан.		
1	Безотходные и	2	4	1	20	27
	материалосберегающие					
	технологии					
2	Перспективные металлические	2	2	1	20	25
	материалы и технология					
	получения изделий из них					
3	3. Перспективные	1	2	2	20	25
	неметаллические материалы и					
	технология получения изделий					
	из них					
4	Электрофизические и	1	2	2	22	27
	электрохимические методы					

обработки (ЭФЭХ). Коррозия и			
методы защиты от нее			

6. Перечень основной и дополнительной учебной литературы 6.1. Основная литература

- 1. Старостин В.В. Материалы и методы нанотехнологий: учебное пособие/ Старостин В.В.— Электрон. текстовые данные.— М.: БИНОМ. Лаборатория знаний, 2012.— 431 с.— Режим доступа: http://www.iprbookshop.ru/4589.— ЭБС «IPRbooks».
- 2. Луценко О.В. Технология материалов: лабораторный практикум. Учебное пособие/ Луценко О.В., Яшуркаева Л.И.— Электрон. текстовые данные.— Белгород: Белгородский государственный технологический университет им. В.Г. Шухова, ЭБС АСВ, 2013.— 93 с.— Режим доступа: http://www.iprbookshop.ru/28410.— ЭБС «IPRbooks».

6.2. Дополнительная литература

- 1. Федосова Н.Л. Антикоррозионная защита металлов в строительстве/ Федосова Н.Л., Румянцева В.Е., Румянцева К.Е.— Электрон. текстовые данные.— Иваново: Ивановский государственный архитектурно-строительный университет, ЭБС АСВ, 2010.— 188 с.— Режим доступа: http://www.iprbookshop.ru/17725.— ЭБС «IPRbooks».
- 2. Михайлин Ю.А. Конструкционные полимерные композиционные материалы: учебное пособие/ Михайлин Ю.А.— Электрон. текстовые данные.— СПб.: Научные основы и технологии, 2010.— 822 с.— Режим доступа: http://www.iprbookshop.ru/13214.— ЭБС «IPRbooks».
- 3. Богодухов С.И. Курс материаловедения в вопросах и ответах: учебное пособие/ Богодухов С.И., Синюхин А.В., Козих Е.С.— Электрон. текстовые данные.— М.: Машиностроение, 2010.— 352 с.— Режим доступа: http://www.iprbookshop.ru/5121.— ЭБС «IPRbooks».
- 4. Сазонов К.Е. Материаловедение: руководство к лабораторным работам/ Сазонов К.Е.— Электрон. текстовые данные.— СПб.: Российский государственный гидрометеорологический университет, 2006.— 96 с.— Режим доступа: http://www.iprbookshop.ru/17932.— ЭБС «IPRbooks».
- 5. Чугуны: методические указания к лабораторной работе/ Электрон. текстовые данные.— Нижний Новгород: Нижегородский государственный архитектурно-строительный университет, ЭБС АСВ, 2010.— 13 с.— Режим доступа: http://www.iprbookshop.ru/16073.— ЭБС «IPRbooks».
- 6. Елагина О.Ю. Технологические методы повышения износостойкости деталей машин: учебное пособие/ Елагина О.Ю.— Электрон. текстовые данные.— М.: Логос, Университетская книга, 2009.— 488 с.— Режим доступа: http://www.iprbookshop.ru/9101.— ЭБС «IPRbooks».
- 7. Богодухов С.И. Технологические процессы в машиностроении: учебник/ Богодухов С.И., Бондаренко Е.В., Схиртладзе А.Г.— Электрон. текстовые данные.— М.: Машиностроение, 2009.— 640 с.— Режим доступа: http://www.iprbookshop.ru/5165.— ЭБС «IPRbooks».
- 8. Двуличанская Н.Н. Композиционные материалы. Физико-химические свойства: учебное пособие/ Двуличанская Н.Н., Слынько Л.Е., Пясецкий В.Б.— Электрон. текстовые данные.— М.: Московский государственный технический университет имени Н.Э. Баумана, 2008.— 48 с.— Режим доступа: http://www.iprbookshop.ru/31427.— ЭБС «IPRbooks».
- 9. Ярославцев В.М. Обработка резанием полимерных композиционных материалов: учебное пособие/ Ярославцев В.М.— Электрон. текстовые данные.— М.: Московский государственный технический университет имени Н.Э. Баумана, 2012.— 184 с.— Режим

доступа: http://www.iprbookshop.ru/31470.— ЭБС «IPRbooks».

10. Наноструктурные материалы: учебное пособие/ — Электрон. текстовые данные.— М.: Техносфера, 2009.— 488 с.— Режим доступа: http://www.iprbookshop.ru/12730.— ЭБС «IPRbooks».

7. Ресурсы Интернета

Перечень ресурсов Интернета, необходимых для освоения дисциплины:

- 1. Электронная библиотечная система IPRbooks (http://www.iprbookshop.ru).
- 2. Википедия свободная энциклопедия (URL: http://ru.wikipedia.org).

8. Информационные технологии и программное обеспечение

Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем (при необходимости):

- 1. Офисный пакет (Microsoft Office или Open Office).
- 2. Технологии обработки текстовой информации.
- 3. Технологии обработки графической информации.
- 4. Технологии обработки видеоинформации.
- 5. Интернет-браузер Google Chrome.

9. Материально-техническая база

Для проведения учебных занятий по дисциплине «Перспективные материалы и технологии» необходимо следующее материально-техническое обеспечение:

- 1. Комплект мультимедийного презентационного оборудования.
- 2. Учебная аудитория для проведения лабораторных занятий, оснащенная набором учебной мебели, аудиторной доской и переносным комплексом мультимедийного презентационного оборудования.
- 3. Аудитория для проведения самостоятельной работы студентов с доступом к сети Интернет.

10. Методические указания для обучающихся по освоению дисциплины

Дисциплина «Перспективные материалы и технологии» относится к базовой части блока дисциплин. Программой дисциплины предусмотрено чтение лекций, проведение практических занятий и лабораторных работ. Промежуточная аттестация проводится в форме аттестации с оценкой.

Лекционные занятия направлены на формирование глубоких, систематизированных знаний по разделам дисциплины. В ходе лекций преподаватель раскрывает основные, наиболее сложные понятия дисциплины, а также связанные с ними теоретические и практические проблемы, даёт рекомендации по практическому освоению изучаемого материала. В целях качественного освоения лекционного материала обучающимся рекомендуется составлять конспекты лекций, использовать эти конспекты при подготовке к практическим занятиям, промежуточной и итоговой аттестации.

Практические занятия являются формой организации педагогического процесса, направленной на углубление научно-теоретических знаний и овладение методами работы, в процессе которых вырабатываются умения и навыки выполнения учебных действий в сфере изучаемой науки. Практические занятия предполагают детальное изучение обучающимися отдельных теоретических положений учебной дисциплины. В ходе практических занятий формируются умения и навыки практического применения теоретических знаний в

конкретных ситуациях путем выполнения поставленных задач, развивается научное мышление и речь, осуществляется контроль учебных достижений обучающихся.

При подготовке к практическим занятиям необходимо ознакомиться с теоретическим материалом дисциплины по изучаемым темам — разобрать конспекты лекций, изучить литературу, рекомендованную преподавателем. Во время самого занятия рекомендуется активно участвовать в выполнении поставленных заданий, задавать вопросы, принимать участие в дискуссиях, аккуратно и своевременно выполнять контрольные задания.

Лабораторная работа представляет собой особый вид индивидуальных практических занятий обучающихся, в ходе которых используются теоретические знания на практике, применяются специальные технические средства, различные инструменты и оборудование. Такие работы призваны углубить профессиональные знания обучающихся, сформировать умения и навыки практической работы в соответствующей отрасли наук. В процессе лабораторной работы обучающийся изучает практическую реализацию тех или иных процессов, сопоставляет полученные результаты с положениями теории, осуществляет интерпретацию результатов работы, оценивает возможность применения полученных знаний на практике.

При подготовке к лабораторным работам следует внимательно ознакомиться с теоретическим материалом по изучаемым темам. Необходимым условием допуска к лабораторным работам, предполагающим использованием специального оборудования и материалов, является освоение правил безопасного поведения при проведении соответствующих работ. В ходе самой работы необходимо строго придерживаться плана работы, предложенного преподавателем, фиксировать промежуточные результаты работы для отчета по лабораторной работе.

Контроль за качеством обучения и ходом освоения дисциплины осуществляется на основе рейтинговой системы текущего контроля успеваемости и промежуточной аттестации студентов. Рейтинговая система предполагает 100-балльную оценку успеваемости студента по учебной дисциплине в течение семестра, 60 из которых отводится на текущий контроль, а 40 — на промежуточную аттестацию по дисциплине. Критериальная база рейтинговой оценки, типовые контрольные задания, а также методические материалы по их применению описаны в фонде оценочных средств по дисциплине, являющемся приложением к данной программе.

11. Учебно-методическое обеспечение самостоятельной работы

Самостоятельная работа обучающихся является неотъемлемой частью процесса обучения в вузе. Правильная организация самостоятельной работы позволяет обучающимся развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, способствует формированию навыков совершенствования профессионального мастерства.

Самостоятельная работа обучающихся во внеаудиторное время включает в себя подготовку к аудиторным занятиям, а также изучение отдельных тем, расширяющих и углубляющих представления обучающихся по разделам изучаемой дисциплины. Такая работа может предполагать проработку теоретического материала, работу с научной литературой, выполнение практических заданий, подготовку ко всем видам контрольных испытаний, выполнение творческих работ.

Учебно-методическое обеспечение для самостоятельной работы обучающихся по дисциплине представлено в рабочей программе и включает в себя:

- рекомендуемую основную и дополнительную литературу;
- информационно-справочные и образовательные ресурсы Интернета;
- оценочные средства для проведения текущего контроля и промежуточной аттестации по дисциплине.

Конкретные рекомендации по планированию и проведению самостоятельной работы

по дисциплине «Перспективные материалы и технологии» представлены в методических указаниях для обучающихся, а также в методических материалах фондов оценочных средств.

12. Фонд оценочных средств

Фонд оценочных средств, включающий перечень компетенций с указанием этапов их формирования, описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания, типовые контрольные задания и методические материалы является приложением к программе учебной дисциплины.