МИНПРОСВЕЩЕНИЯ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Волгоградский государственный социально-педагогический университет» Факультет математики, информатики и физики Кафедра высшей математики и физики

«УТВЕРЖДАЮ»
Проректор по учебной работе
_____ Ю. А. Жадаев
« 29 » марта 2021 г.

Графы и их приложения

Программа учебной дисциплины

Направление 44.03.05 «Педагогическое образование (с двумя профилями подготовки)»
Профили «Математика», «Информатика»

очная форма обучения

Обсуждена на заседании кафедр « 24 » февраля 2021 г., протокол		тики и физиі	ки		
Заведующий кафедрой(под	пись) С.Ю.	Глазов «24 кафедрой)	4 » февраля 2 (дата)	2021 г.	
Рассмотрена и одобрена на засед физики « 18 » марта 2021 г., про		вета факульте	ста математи	ки, информат	ики и
Председатель учёного совета Т.	К. Смыковская	(подпись)	« 18 » март (дата		
Утверждена на заседании учёно « 29 » марта 2021 г., протокол М		ВО «ВГСПУ	⁷ »		
Отметки о внесении изменени	й в программу:				
Лист изменений №	(подпись)	(руководите	ель ОПОП)	(дата)	
Лист изменений №	(подпись)	(руководите	ль ОПОП)	(дата)	
Лист изменений №	(подпись)	(руководите	ель ОПОП)	(дата)	

Разработчики:

Карташова Анна Владимировна, кандидат физико-математических наук, доцент кафедры высшей математики и физики ФГБОУ ВО "ВГСПУ".

Программа дисциплины «Графы и их приложения» соответствует требованиям ФГОС ВО по направлению подготовки 44.03.05 «Педагогическое образование (с двумя профилями подготовки)» (утверждён приказом Министерства образования и науки РФ от 22 февраля 2018 г. № 125) и базовому учебному плану по направлению подготовки 44.03.05 «Педагогическое образование (с двумя профилями подготовки)» (профили «Математика», «Информатика»), утверждённому Учёным советом ФГБОУ ВО «ВГСПУ» (от 29 марта 2021 г., протокол № 6).

1. Цель освоения дисциплины

Сформировать систематизированные знания по теории графов.

2. Место дисциплины в структуре ОПОП

Дисциплина «Графы и их приложения» относится к вариативной части блока дисциплин и является дисциплиной по выбору.

Для освоения дисциплины «Графы и их приложения» обучающиеся используют знания, умения, способы деятельности и установки, сформированные в ходе изучения дисциплин «Алгебра», «Архитектура компьютера», «Вариативные методические системы обучения математике», «Вводный курс математики», «Высокоуровневые методы программирования», «Геометрия», «Дидактика математики с практикумом решения математических задач», «Дискретная математика», «Дифференциальные уравнения», «Математическая логика и теория алгоритмов», «Математический анализ», «Методика обучения информатике», «Практикум решения задач по элементарной математике», «Программирование», «Теоретические основы информатики», «Теория вероятностей и математическая статистика», «Теория чисел», «Технологии обучения решению задач по математике повышенной сложности», «Частная методика обучения математике», «Численные методы», «Администрирование компьютерных систем», «Веб-дизайн и разработка интернет-приложений», «Дополнительные главы математического анализа», «Естественнонаучная картина мира», «Инструментальные учебные среды», «Информационные системы», «Информационные технологии», «История математики», «Компьютерная графика и мультимедиа технологии», «Компьютерные сети», «Основные алгебраические системы», «Современные языки программирования», «Социальная информатика», «Теория функций комплексного переменного», «Физика», прохождения практик «Производственная (педагогическая) практика (Информатика)», «Производственная (педагогическая) практика (Математика)».

3. Планируемые результаты обучения

В результате освоения дисциплины выпускник должен обладать следующими компетенциями:

– способен применять предметные знания в образовательном процессе (ПК-3).

В результате изучения дисциплины обучающийся должен:

знать

- основные понятия и предложения теории графов;
- основные определения и предложения об ориентированных графах;

уметь

- грамотно проводить доказательства основных свойств графов;
- грамотно проводить доказательства основных свойств ориентированных графов;

владеть

- опытом решения задач методами теории графов;
- опытом решения задач методами теории ориентированных графов.

4. Объём дисциплины и виды учебной работы

Dyna ywediye y actiony	Всего	Семестры
Вид учебной работы	часов	10
Аудиторные занятия (всего)	26	26
В том числе:		
Лекции (Л)	12	12
Практические занятия (ПЗ)	14	14
Лабораторные работы (ЛР)	_	_
Самостоятельная работа	46	46
Контроль	_	_
Вид промежуточной аттестации		34
Общая трудоемкость часы	72	72
зачётные единицы	2	2

5.Содержание дисциплины

5.1. Содержание разделов дисциплины

	**	
No	Наименование раздела	Содержание раздела дисциплины
п/п	дисциплины	
1	Графы, свойства и виды	Понятие графа, псевдографа, мультиграфа,
	графов	гиперграфа. Основные способы представления графов
		в памяти компьютера. Эйлеровы и гамильтоновы
		графы. Задача коммивояжера. Использование свойств
		графов при решении задач элементарной математики.
		Свойства деревьев. Применение деревьев при решении
		комбинаторных задач. Планарные графы. Вершинные
		и реберные раскраски графов. Теорема Эйлера о
		планарных графах и ее применение при решении задач
		элементарной геометрии. Раскраски плоских графов.
		Использование свойств графов в различных областях
		науки и техники.
2	Ориентированные графы	Понятие ориентированного графа, подграфа.
		Основные способы представления ориентированных
		графов в памяти компьютера: матрицы смежности и
		инцидентности орграфа, списки смежности, массивы
		дуг. Ормаршруты, пути и контуры в ориентированных
		графах. Свойства турниров. Применение
		ориентированных графов при решении задач
		элементарной математики.

5.2. Количество часов и виды учебных занятий по разделам дисциплины

No	Наименование раздела	Лекц.	Практ.	Лаб.	CPC	Всего
Π/Π	дисциплины		зан.	зан.		
1	Графы, свойства и виды графов	6	8		23	37
2	Ориентированные графы	6	6		23	35

6. Перечень основной и дополнительной учебной литературы

6.1. Основная литература

- 1. Костюкова Н.И. Графы и их применение [Электронный ресурс]: учебное пособие/ Костюкова Н.И.— Электрон. текстовые данные.— Москва, Саратов: Интернет-Университет Информационных Технологий (ИНТУИТ), Ай Пи Ар Медиа, 2020.— 147 с.— Режим доступа: http://www.iprbookshop.ru/89435.html.— ЭБС «IPRbooks».
- 2. Алексеев В.Е. Графы и алгоритмы [Электронный ресурс]: учебное пособие/ Алексеев В.Е., Таланов В.А.— Электрон. текстовые данные.— Москва, Саратов: Интернет-Университет Информационных Технологий (ИНТУИТ), Ай Пи Ар Медиа, 2020.— 153 с.— Режим доступа: http://www.iprbookshop.ru/89434.html.— ЭБС «IPRbooks».

6.2. Дополнительная литература

- 1. Атапин В.Г. Специальные главы математики: множества, графы, комбинаторика [Электронный ресурс]: учебное пособие/ Атапин В.Г.— Электрон. текстовые данные.— Новосибирск: Новосибирский государственный технический университет, 2016.— 83 с.— Режим доступа: http://www.iprbookshop.ru/91534.html.— ЭБС «IPRbooks».
- 2. Овчинников В.А. Графы в задачах анализа и синтеза структур сложных систем [Электронный ресурс]/ Овчинников В.А.— Электрон. текстовые данные.— Москва: Московский государственный технический университет имени Н.Э. Баумана, 2014.— 424 с.— Режим доступа: http://www.iprbookshop.ru/94770.html.— ЭБС «IPRbooks».

7. Ресурсы Интернета

Перечень ресурсов Интернета, необходимых для освоения дисциплины:

- $1.\$ Информационно-поисковая и вычислительная система Wolfram
Alpha. URL: http://www.wolframalpha.com.
- 2. Википедия свободная энциклопедия. URL: http://ru.wikipedia.org и http://en.wikipedia.org.
 - 3. Электронная библиотечная система IPRbooks (http://www.iprbookshop.ru).

8. Информационные технологии и программное обеспечение

Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем (при необходимости):

1. Офисный пакет Open Office.

9. Материально-техническая база

Для проведения учебных занятий по дисциплине «Графы и их приложения» необходимо следующее материально-техническое обеспечение:

- 1. Аудитория с мультимедийной поддержкой для проведения учебных занятий.
- 2. Учебная аудитория для проведения практических занятий.
- 3. Аудитория для проведения самостоятельной работы студентов с доступом к сети Интернет.

10. Методические указания для обучающихся по освоению дисциплины

Дисциплина «Графы и их приложения» относится к вариативной части блока дисциплин и является дисциплиной по выбору. Программой дисциплины предусмотрено чтение лекций и проведение практических занятий. Промежуточная аттестация проводится в форме зачета.

Лекционные занятия направлены на формирование глубоких, систематизированных

знаний по разделам дисциплины. В ходе лекций преподаватель раскрывает основные, наиболее сложные понятия дисциплины, а также связанные с ними теоретические и практические проблемы, даёт рекомендации по практическому освоению изучаемого материала. В целях качественного освоения лекционного материала обучающимся рекомендуется составлять конспекты лекций, использовать эти конспекты при подготовке к практическим занятиям, промежуточной и итоговой аттестации.

Практические занятия являются формой организации педагогического процесса, направленной на углубление научно-теоретических знаний и овладение методами работы, в процессе которых вырабатываются умения и навыки выполнения учебных действий в сфере изучаемой науки. Практические занятия предполагают детальное изучение обучающимися отдельных теоретических положений учебной дисциплины. В ходе практических занятий формируются умения и навыки практического применения теоретических знаний в конкретных ситуациях путем выполнения поставленных задач, развивается научное мышление и речь, осуществляется контроль учебных достижений обучающихся.

При подготовке к практическим занятиям необходимо ознакомиться с теоретическим материалом дисциплины по изучаемым темам — разобрать конспекты лекций, изучить литературу, рекомендованную преподавателем. Во время самого занятия рекомендуется активно участвовать в выполнении поставленных заданий, задавать вопросы, принимать участие в дискуссиях, аккуратно и своевременно выполнять контрольные задания.

Контроль за качеством обучения и ходом освоения дисциплины осуществляется на основе рейтинговой системы текущего контроля успеваемости и промежуточной аттестации студентов. Рейтинговая система предполагает 100-балльную оценку успеваемости студента по учебной дисциплине в течение семестра, 60 из которых отводится на текущий контроль, а 40 — на промежуточную аттестацию по дисциплине. Критериальная база рейтинговой оценки, типовые контрольные задания, а также методические материалы по их применению описаны в фонде оценочных средств по дисциплине, являющемся приложением к данной программе.

11. Учебно-методическое обеспечение самостоятельной работы

Самостоятельная работа обучающихся является неотъемлемой частью процесса обучения в вузе. Правильная организация самостоятельной работы позволяет обучающимся развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, способствует формированию навыков совершенствования профессионального мастерства.

Самостоятельная работа обучающихся во внеаудиторное время включает в себя подготовку к аудиторным занятиям, а также изучение отдельных тем, расширяющих и углубляющих представления обучающихся по разделам изучаемой дисциплины. Такая работа может предполагать проработку теоретического материала, работу с научной литературой, выполнение практических заданий, подготовку ко всем видам контрольных испытаний, выполнение творческих работ.

Учебно-методическое обеспечение для самостоятельной работы обучающихся по дисциплине представлено в рабочей программе и включает в себя:

- рекомендуемую основную и дополнительную литературу;
- информационно-справочные и образовательные ресурсы Интернета;
- оценочные средства для проведения текущего контроля и промежуточной аттестации по дисциплине.

Конкретные рекомендации по планированию и проведению самостоятельной работы по дисциплине «Графы и их приложения» представлены в методических указаниях для обучающихся, а также в методических материалах фондов оценочных средств.

12. Фонд оценочных средств

Фонд оценочных средств, включающий перечень компетенций с указанием этапов их формирования, описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания, типовые контрольные задания и методические материалы является приложением к программе учебной дисциплины.