МАТЕМАТИЧЕСКИЙ АНАЛИЗ

1. Цель освоения дисциплины

Формирование систематизированных знаний в области математического анализа.

2. Место дисциплины в структуре ОПОП

Дисциплина «Математический анализ» относится к базовой части блока дисциплин. Для освоения дисциплины «Математический анализ» обучающиеся используют знания, умения, способы деятельности и установки, сформированные в ходе изучения дисциплин «Алгебра», «Вводный курс математики», «Возрастная анатомия, физиология и гигиена», «Высокоуровневые методы программирования», «Геометрия», «Информационные технологии», «Программирование», «Естественнонаучная картина мира». Освоение данной дисциплины является необходимой основой для последующего изучения дисциплин «Алгебра», «Архитектура компьютера», «Вариативные методические системы обучения математике», «Высокоуровневые методы программирования», «Геометрия», «Дидактика математики с практикумом решения математических задач», «Дискретная математика», «Дифференциальные уравнения», «Информационные технологии», «Исследование операций», «Математическая логика и теория алгоритмов», «Методика обучения информатике», «Практикум решения задач по элементарной математике», «Программирование», «Теоретические основы информатики», «Теория вероятностей и математическая статистика», «Теория чисел», «Технологии обучения решению задач по математике повышенной сложности», «Частная методика обучения математике», «Численные методы», «Числовые системы», «Администрирование компьютерных систем», «Веб-дизайн и разработка интернет-приложений», «Графы и их приложения», «Дополнительные главы математического анализа», «Инструментальные учебные среды», «Информационные системы», «Информационные технологии в управлении образованием», «История математики», «Компьютерная графика и мультимедиа технологии», «Компьютерные сети», «Методика обучения информатике на углубленном уровне», «Методика обучения математике на углубленном уровне», «Основные алгебраические системы», «Основы теории решеток», «Перспективные направления искусственного интеллекта», «Перспективные направления компьютерного моделирования», «Пропедевтический курс обучения информатике», «Расширения полей», «Современные языки программирования», «Социальная информатика», «Теория функций комплексного переменного», «Физика», прохождения практик «Производственная (исследовательская) практика», «Производственная (педагогическая) практика (Информатика)», «Производственная (педагогическая) практика (Математика)», «Учебная (методическая) практика».

3. Планируемые результаты обучения

В результате освоения дисциплины выпускник должен обладать следующими компетенциями:

- способен осуществлять педагогическую деятельность на основе специальных научных знаний (ОПК-8);
- способен применять предметные знания в образовательном процессе (ПК-3).

В результате изучения дисциплины обучающийся должен:

знать

- основные положения теории пределов и непрерывности функции;
- основные положения дифференциального исчисления функции одного переменного;
- основные положения интегрального исчисления функции одной переменной;

- основные положения теории рядов;
- основные положения дифференциального и интегрального исчислений функций многих переменных;

уметь

- вычислять пределы функций и исследовать функции одной переменной на непрерывность;
- исследовать функцию одной переменной средствами дифференциального исчисления;
- вычислять неопределенные и определенные интегралы;
- исследовать на сходимость числовые и функциональные ряды;
- решать задачи на исследование функций двух переменных на экстремум;

владеть

- языком теории пределов;
- методами вычисления производных и исследования функций;
- методами интегрального исчисления функции одной переменной;
- опытом решения задач на исследование рядов;
- методами дифференциального и интегрального исчислений функций многих переменных.

4. Общая трудоёмкость дисциплины и её распределение

количество зачётных единиц — 11, общая трудоёмкость дисциплины в часах — 396 ч. (в т.ч. аудиторных часов — 44 ч., СРС — 334 ч.), распределение по семестрам — 1 курс, зима, 1 курс, лето, 2 курс, зима, 2 курс, лето, форма и место отчётности — экзамен (1 курс, лето), аттестация с оценкой (2 курс, зима), экзамен (2 курс, лето).

5. Краткое содержание дисциплины

Введение в анализ.

Предмет математического анализа. Связь со школьным курсом математики. Множество R действительных чисел. Ограниченные и неограниченные множества. Промежутки. Функции и их общие свойства. Обратная функция. Действительная функция действительной переменной. График функции. Числовые последовательности. Предел. Бесконечно малые и их сравнение. Бесконечно большие. Непрерывность. Точки разрыва.

Дифференциальное исчисление функций одной переменной. Производная и дифференциал. Дифференцируемость функции. Производные и дифференциалы высших порядков. Параметрически заданные функции и их дифференцирование. Касательная к кривой. Теоремы Ролля, Лагранжа и Коши. Правило Лопиталя. Максимум и минимум. Необходимое и достаточные условия экстремума. Нахождение наибольших и наименьших значений. Выпуклость функции. Точки перегиба. Асимптоты. Применение дифференциального исчисления к построению графиков функций.

Интегральное исчисление функций одной переменной.

Неопределенный интеграл. Интегрирование по частям. Интегрирование заменой переменной. Интегрирование рациональных функций. Интегрирование простейших иррациональных и трансцендентных функций. Определенный интеграл. Задачи, приводящие к понятию определенного интеграла. Необходимое и достаточное условие интегрируемости. Основные свойства определенного интеграла. Формула Ньютона-Лейбница. Интегрирование по частям и заменой переменной. Приложения определенного интеграла. Несобственные интегралы. Несобственные интегралы по бесконечному промежутку. Несобственные интегралы от неограниченных функций. Условия сходимости.

Ряды.

Числовые ряды. Числовой ряд и его частичные суммы. Сходящиеся ряды. Остаток сходящегося ряда. Необходимое условие сходимости числового ряда. Гармонический ряд. Сравнение рядов с положительными членами. Признаки Даламбера и Коши. Интегральный признак сходимости. Знакочередующиеся ряды. Теорема Лейбница. Абсолютно сходящиеся ряды. Условно сходящиеся ряды. Функциональная последовательность и функциональный ряд. Область сходимости. Равномерная сходимость. Степенные ряды. Понятие степенного ряда. Интервал и радиус сходимости. Равномерная сходимость степенного ряда. Разложение функций в степенные ряды. Ряд Тейлора.

Дифференциальное и интегральное исчисление для функций нескольких переменных. Функции нескольких переменных. График функции двух переменных, линии уровня. Частные производные, дифференцируемость и дифференциал функции нескольких переменных. Достаточное условие дифференцируемости. Касательная плоскость. Дифференцирование сложной функции. Производная по направлению. Градиент. Частные производные и дифференциалы высших порядков. Экстремум функции нескольких переменных. Нахождение наибольших и наименьших значений. Двойной интеграл. Понятие двойного интеграла. Основные свойства двойного интеграла. Вычисление двойного интеграла повторным интегрированием. Вычисление объемов тел.

6. Разработчик

Тимченко Ольга Владимировна, кандидат физико-математических наук, доцент кафедры высшей математики и физики ФГБОУ ВО "ВГСПУ",

Харламов Олег Сергеевич, кандидат физико-математических наук, доцент кафедры высшей математики и физики ФГБОУ ВО "ВГСПУ".