ПЕРСПЕКТИВНЫЕ НАПРАВЛЕНИЯ КОМПЬЮТЕРНОГО МОДЕЛИРОВАНИЯ

1. Цель освоения дисциплины

Сформировать у студентов системные представления о перспективных направлениях математического и информационного компьютерного моделирования.

2. Место дисциплины в структуре ОПОП

Дисциплина «Перспективные направления компьютерного моделирования» относится к вариативной части блока дисциплин и является дисциплиной по выбору. Для освоения дисциплины «Перспективные направления компьютерного моделирования» обучающиеся используют знания, умения, способы деятельности и установки, сформированные в ходе изучения дисциплин «Алгебра», «Архитектура компьютера», «Вариативные методические системы обучения математике», «Вводный курс математики», «Высокоуровневые методы программирования», «Геометрия», «Дидактика математики с практикумом решения математических задач», «Дискретная математика», «ИКТ и медиаинформационная грамотность», «Информационные технологии», «Математическая логика и теория алгоритмов», «Математический анализ», «Методика обучения информатике», «Практикум решения задач по элементарной математике», «Программирование», «Теория вероятностей и математическая статистика», «Теория чисел», «Технологии обучения решению задач по математике повышенной сложности», «Философия», «Частная методика обучения математике», «3D-моделирование и печать», «Веб-дизайн и разработка интернет-приложений», «Естественнонаучная картина мира», «Инструментальные учебные среды», «Информационные системы», «Компьютерная графика и мультимедиа технологии», «Компьютерные сети», «Методика обучения математике на углубленном уровне», «Образовательная робототехника», прохождения практик «Производственная (исследовательская) практика», «Учебная (технологическая) практика». Освоение данной дисциплины является необходимой основой для последующего изучения дисциплин «Дифференциальные уравнения», «Исследование операций», «Методика обучения информатике», «Теоретические основы информатики», «Численные методы», «Числовые системы», «Графы и их приложения», «Дополнительные главы математического анализа», «История математики», «Методика обучения информатике на углубленном уровне», «Основные алгебраические системы», «Основы теории решеток», «Пропедевтический курс обучения информатике», «Расширения полей», «Социальная информатика», «Теория функций комплексного переменного», «Физика», прохождения практик «Производственная (педагогическая) практика (Информатика)», «Производственная (педагогическая) практика (Математика)», «Производственная (преддипломная) практика», «Учебная (методическая) практика».

3. Планируемые результаты обучения

В результате освоения дисциплины выпускник должен обладать следующими компетенциями:

- способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач (УК-1);
- способен применять предметные знания в образовательном процессе (ПК-3).

В результате изучения дисциплины обучающийся должен:

знать

- основные подходы в имитационном моделировании;
- основные принципы разработки имитационных моделей средствами пакета GPSS World;

- основы моделирования знаний с помощью онтологий;
- основные средства и технологии интеллектуального анализа данных;

уметь

- разрабатывать имитационные модели средствами пакета GPSS World;
- разрабатывать компоненты онтологий в среде Protege;
- использовать средства анализа данных в языке программирования Python;

владеть

- навыками разработки имитационных моделей средствами пакета GPSS World;
- опытом разработки компонентов онтологий в среде Protege;
- опытом использования средств анализа данных в языке программирования Python.

4. Общая трудоёмкость дисциплины и её распределение

количество зачётных единиц -2, общая трудоёмкость дисциплины в часах -72 ч. (в т.ч. аудиторных часов -10 ч., CPC-62 ч.), распределение по семестрам -5 курс, зима, форма и место отчётности - зачёт (5 курс, зима).

5. Краткое содержание дисциплины

Перспективные направления математического моделирования.

Перспективные направления компьютерного математического моделирования. Имитационное моделирование. Система имитационного моделирования GPSS World. Основные объекты и элементы языка GPSS World. Имитационное моделирование систем массового обслуживания средствами GPSS World. Моделирование нелинейных динамических систем. Имитационное моделирование средствами пакета компьютерного моделирования AnyLogic.

Перспективные направления информационного моделирования.

Перспективные направления информационного моделирования. Онтологии. Моделирование знаний на основе онтологий. Редактор онтологий Protege. Многомерная модель данных. Хранилища данных. Задачи и методы интеллектуального анализа данных. Современные модели знаний, программные средства и технологии, используемые в интеллектуальном анализе данных. Средства анализа данных в языке программирования Python.

6. Разработчик

Усольцев Вадим Леонидович, кандидат физико-математических наук, доцент кафедры информатики и методики преподавания информатики ФГБОУ ВО «ВГСПУ».