МИНПРССЕЕЩЕНИЯ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Волгоградский государственный социально-педагогический университет» Институт естественнонаучного образования, физической культуры и безопасности жизнедеятельности

Кафедра теории и методики биолого-химического образования и ландшафтной архитектуры

Проректор но учебной работе

Но А. Жадаев

«УС» г. 2022 г.

Решение химических задач

Программа учебной дисциплины

Направление 44.03.05 «Педагогическое образование (с двумя профилями

подготовки)»

Профили «Биология», «Химия»

очная форма обучения

Обсуждена на заседании кафедры ландшафтной архитектуры «17» 202 г., протоко		одики биолого-химическо	го образования
Заведующий кафедрой(подпи	(3)	он от	<u>al</u> 202 L г.
Рассмотрена и одобрена на заседа образования, физической культур жизнедеятельности« <u>23</u> » <u>05</u>	ы и безопасно	ости	нонаучного
Председатель учёного совета	дурь 7.H.	<u>Бурудь</u> « <u>23</u> » <u>О</u> (да	25 202 <u>₽</u> ®
Утверждена на заседании учёного « <u>30</u> » <u>05</u> 202 <u>2</u> г., протоко	о совета ФГБО ол № <i>1</i> 3	ОУ ВО «ВГСПУ»	
Отметки о внесении изменений	в программу	y: DEHDHA 9	
Лист изменений №	под ись)	(руководитель ОПОП)	(дата)
		require 2 (b) she same	,
Лист изменений №			
Лист изменений №	(подпись)	(руководитель ОПОП)	(дата)

Разработчики:

Реут Любовь Алексеевна, кандидат педагогических наук, доцент кафедры теории и методики биолого-химического образования и ландшафтной архитектуры $\Phi \Gamma EOY$ BO «ВГСПУ».

Программа дисциплины «Решение химических задач» соответствует требованиям ФГОС ВО по направлению подготовки 44.03.05 «Педагогическое образование (с двумя профилями подготовки)» (утверждён приказом Министерства образования и науки РФ от 22 февраля 2018 г. N 125) и базовому учебному плану по направлению подготовки 44.03.05 «Педагогическое образование (с двумя профилями подготовки)» (профили «Биология», «Химия»), утверждённому Учёным советом ФГБОУ ВО «ВГСПУ» (от 30 мая 2022 г., протокол № 13).

1. Цель освоения дисциплины

Усвоение студентами методов и приёмов решения химических задач, а также овладение научно-обоснованной методикой обучения учащихся решению расчетных и экспериментальных химических задач, формирование экологической культуры обучающихся.

2. Место дисциплины в структуре ОПОП

Дисциплина «Решение химических задач» относится к базовой части блока дисциплин.

Для освоения дисциплины «Решение химических задач» обучающиеся используют знания, умения, способы деятельности и установки, сформированные в ходе изучения дисциплин «Аналитическая химия», «Общая и неорганическая химия», прохождения практик «Учебная (ознакомительная по физико-химическим методам анализа) практика».

Освоение данной дисциплины является необходимой основой для последующего изучения дисциплин «Биохимия», «Внеурочная работа по химии», «Методика обучения и воспитания: химия», «Неорганический синтез», «Органическая химия», «Органический синтез», «Прикладная химия», «Современные технологии в химическом образовании», «Физическая и коллоидная химия», «Химия окружающей среды», прохождения практик «Производственная (педагогическая по химии) практика», «Учебная (проектнотехнологическая по прикладной химии) практика».

3. Планируемые результаты обучения

В результате освоения дисциплины выпускник должен обладать следующими компетенциями:

- способен осваивать и использовать теоретические знания и практические умения и навыки в предметной области при решении профессиональных задач (ПК-1).
- ПК-1.1. Знает структуру, состав и дидактические единицы предметной области (преподаваемого предмета).
- ПК-1.2. Умеет осуществлять отбор учебного содержания для его реализации в различных формах обучения в соответствии с требованиями ФГОС ОО.
- ПК-1.3. Демонстрирует умение разрабатывать различные формы учебных занятий, применять методы, приемы и технологии обучения, в том числе информационные.

В результате изучения дисциплины обучающийся должен:

знать

- структуру, состав и дидактические единицы предметной области "Химия";

уметь

– осуществлять отбор учебного содержания и разрабатывать различные формы учебных занятий, применять методы, приемы и технологии обучения, в том числе информационные в соответствии с требованиями ФГОС ОО;

4. Объём дисциплины и виды учебной работы

David Antopologia populari	Всего	Семестры
Вид учебной работы	часов	5
Аудиторные занятия (всего)	28	28
В том числе:		
Лекции (Л)	_	_
Практические занятия (ПЗ)	_	_
Лабораторные работы (ЛР)	28	28
Самостоятельная работа	40	40
Контроль	4	4
Вид промежуточной аттестации		3Ч
Общая трудоемкость часы	72	72
зачётные единицы	2	2

5.Содержание дисциплины **5.1.** Содержание разделов дисциплины

No	Наименование раздела	Содержание раздела дисциплины	
п/п	дисциплины	содержание раздела дисциплины	
1	Основные вопросы	Теоретические основы методики обучения решению	
1	методики обучения	химических задач. Место и значение химических задач	
	I = = = = = = = = = = = = = = = = = = =		
	решению химических задач	в системе школьного химического содержания.	
		Классификация химических задач. Функции расчётных	
		и экспериментальных химических задач.	
		Компетентностные и контекстные задачи в обучении	
		химии. Требования к обучающимся при решении	
		химических задач. Включение химических задач в	
		методы проблемного и интерактивного обучения.	
		Место химических задач в различных образовательных	
		программах. Оценивание результатов обучения химии	
		с применением химических задач. Вычисления по	
		химическим формулам соединений: вычисление	
		относительной молекулярной и молярной массы	
		веществ, количества вещества, числа структурных	
		элементов вещества, массовой доли химического	
		элемента в соединении, количества вещества и его	
		массу, объёма газов. Вычисления, связанные с	
		растворами веществ: вычисление массы растворённого	
		вещества и растворителя для приготовления раствора,	
		в том числе из кристаллогидратов; вычисление массы	
		растворённого вещества в растворе известной	
		концентрации, в том числе с использованием	
		плотности раствора; расчёты, связанные разбавлением	
		и концентрированием раствора, смешением растворов	
		одного и того же вещества разной концентрации.	
		Вычисления по химическим уравнениям: количества	
		вещества, объёма и массы реагентов или продуктов	
		реакции, в том числе с массовой долей растворённого	
		вещества в растворе, массовой (объёмной) долей	
		примеси в исходном веществе; в том числе массовой	
		(объёмной) доли выхода продукта (в % от	

теоретически возможного); расчёты, связанные с избытком одного из реагирующих веществ; расчёты по термохимическим уравнениям. Экспериментальные задачи: получение веществ, определение примесей и разделение смесей веществ, распознавание неорганических веществ, проведение характерных и качественных реакций, конструирование приборов и работа с ними. Экспериментальные задачи по темам «Электролитическая диссоциация», «Важнейшие неметаллы и их соединения», «Важнейшие металлы и их соединения». Методические подходы к решению типовых задач и оценивание результатов обучения их решению. Теоретические основы методики обучения решению химических задач. Место и значение химических задач в системе школьного химического содержания. Классификация химических задач. Функции расчётных и экспериментальных химических задач. Компетентностные и контекстные задачи в обучении химии. Требования к обучающимся при решении химических задач. Включение химических задач в методы проблемного и интерактивного обучения. Место химических задач в различных образовательных программах. Оценивание результатов обучения химии с применением химических задач. Вычисления по химическим формулам соединений: вычисление относительной молекулярной и молярной массы веществ, количества вещества, числа структурных элементов вещества, массовой доли химического элемента в соединении, количества вещества и его массу, объёма газов. Вычисления, связанные с растворами веществ: вычисление массы растворённого вещества и растворителя для приготовления раствора, в том числе из кристаллогидратов; вычисление массы растворённого вещества в растворе известной концентрации, в том числе с использованием плотности раствора; расчёты, связанные разбавлением и концентрированием раствора, смешением растворов одного и того же вещества разной концентрации. Вычисления по химическим уравнениям: количества вещества, объёма и массы реагентов или продуктов реакции, в том числе с массовой долей растворённого вещества в растворе, массовой (объёмной) долей примеси в исходном веществе; в том числе массовой (объёмной) доли выхода продукта (в % от теоретически возможного); расчёты, связанные с избытком одного из реагирующих веществ; расчёты по термохимическим уравнениям. Экспериментальные задачи: получение веществ, определение примесей и разделение смесей веществ, распознавание неорганических веществ, проведение характерных и качественных реакций, конструирование приборов и работа с ними.

	Экспериментальные задачи по темам
	«Электролитическая диссоциация», «Важнейшие
	неметаллы и их соединения», «Важнейшие металлы и
	их соединения». Методические подходы к решению
	типовых задач и оценивание результатов обучения их
	решению.

5.2. Количество часов и виды учебных занятий по разделам дисциплины

No	Наименование раздела	Лекц.	Практ.	Лаб.	CPC	Всего
Π/Π	дисциплины		зан.	зан.		
1	Основные вопросы методики	_	_	28	40	68
	обучения решению химических					
	задач					

6. Перечень основной и дополнительной учебной литературы

6.1. Основная литература

1. Болтромеюк, В. В. Тематические тесты и задачи по химии [Электронный ресурс] : Готовимся к централизованному тестированию / В. В. Болтромеюк ; Болтромеюк В. В. - Минск : ТетраСистемс, 2012. - 300 с. - ISBN 978-985-536-290-7. - Режим доступа: http://www.iprbookshop.ru/28240.

6.2. Дополнительная литература

1. Костенко, А. Л. 550 ОВР. Окислительно-восстановительные реакции. Составление уравнений и расстановка коэффициентов. Химический эквивалент вещества в ОВР. Нормальная концентрация растворов [Электронный ресурс] : учебное пособие / А. Л. Костенко, В. Е. Эрреро-Паленсуэла. - Москва : Московский городской педагогический университет, 2010. - 180 с. - Режим доступа: http://www.iprbookshop.ru/26424 - ЭБС IPRbooks.

7. Ресурсы Интернета

Перечень ресурсов Интернета, необходимых для освоения дисциплины:

- 1. Школьный портал ТГУ "Университетский проспект". http://ido.tsu.ru/bank.
- 2. Электронная библиотечная система IPRbooks. URL:http://iprbookshop.ru.
- 3. Официальный информационный портал ЕГЭ //http://www.ege.edu.ru/.
- 4. Портал «Сеть творческих учителей» http://it-n.ru/communities.

8. Информационные технологии и программное обеспечение

Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем (при необходимости):

1. Офисный пакет (Microsoft Office или Open Office).

9. Материально-техническая база

Для проведения учебных занятий по дисциплине «Решение химических задач» необходимо следующее материально-техническое обеспечение:

- 1. Учебная аудитория с мультимедийной поддержкой для проведения лабораторных занятий.
- 2. Аудитория для проведения самостоятельной работы студентов с доступом к сети Интернет.

10. Методические указания для обучающихся по освоению дисциплины

Дисциплина «Решение химических задач» относится к базовой части блока дисциплин. Программой дисциплины предусмотрено проведение лабораторных работ. Промежуточная аттестация проводится в форме зачета.

Лабораторная работа представляет собой особый вид индивидуальных практических занятий обучающихся, в ходе которых используются теоретические знания на практике, применяются специальные технические средства, различные инструменты и оборудование. Такие работы призваны углубить профессиональные знания обучающихся, сформировать умения и навыки практической работы в соответствующей отрасли наук. В процессе лабораторной работы обучающийся изучает практическую реализацию тех или иных процессов, сопоставляет полученные результаты с положениями теории, осуществляет интерпретацию результатов работы, оценивает возможность применения полученных знаний на практике.

При подготовке к лабораторным работам следует внимательно ознакомиться с теоретическим материалом по изучаемым темам. Необходимым условием допуска к лабораторным работам, предполагающим использованием специального оборудования и материалов, является освоение правил безопасного поведения при проведении соответствующих работ. В ходе самой работы необходимо строго придерживаться плана работы, предложенного преподавателем, фиксировать промежуточные результаты работы для отчета по лабораторной работе.

Контроль за качеством обучения и ходом освоения дисциплины осуществляется на основе рейтинговой системы текущего контроля успеваемости и промежуточной аттестации студентов. Рейтинговая система предполагает 100-балльную оценку успеваемости студента по учебной дисциплине в течение семестра, 60 из которых отводится на текущий контроль, а 40 — на промежуточную аттестацию по дисциплине. Критериальная база рейтинговой оценки, типовые контрольные задания, а также методические материалы по их применению описаны в фонде оценочных средств по дисциплине, являющемся приложением к данной программе.

11. Учебно-методическое обеспечение самостоятельной работы

Самостоятельная работа обучающихся является неотъемлемой частью процесса обучения в вузе. Правильная организация самостоятельной работы позволяет обучающимся развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, способствует формированию навыков совершенствования профессионального мастерства.

Самостоятельная работа обучающихся во внеаудиторное время включает в себя подготовку к аудиторным занятиям, а также изучение отдельных тем, расширяющих и углубляющих представления обучающихся по разделам изучаемой дисциплины. Такая работа может предполагать проработку теоретического материала, работу с научной литературой, выполнение практических заданий, подготовку ко всем видам контрольных испытаний, выполнение творческих работ.

Учебно-методическое обеспечение для самостоятельной работы обучающихся по дисциплине представлено в рабочей программе и включает в себя:

- рекомендуемую основную и дополнительную литературу;
- информационно-справочные и образовательные ресурсы Интернета;

оценочные средства для проведения текущего контроля и промежуточной аттестации по дисциплине.

Конкретные рекомендации по планированию и проведению самостоятельной работы по дисциплине «Решение химических задач» представлены в методических указаниях для обучающихся, а также в методических материалах фондов оценочных средств.

12. Фонд оценочных средств

Фонд оценочных средств, включающий перечень компетенций с указанием этапов их формирования, описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания, типовые контрольные задания и методические материалы является приложением к программе учебной дисциплины.