МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Волгоградский государственный социально-педагогический университет» Институт технологии, экономики и сервиса Кафедра технологии, экономики образования и сервиса

Проректор по учебной работе

И. А. Жадаев

2019 г.

Перспективные материалы и технологии

Программа учебной дисциплины

Направление 44.03.05 «Педагогическое образование (с двумя профилями подготовки)»

Профили «Экономика», «Технология»

очная форма обучения

Волгоград 2019

Обсуждена на заседании кафедры т	ехнологии, эк	ономики образования и с	сервиса
« 15» _ мав 2019 г., протокол.	Nº 10	•	1
Заведующий кафедрой (полись	(3ab.	Да ф ИН «15» <u>ма</u> кафедрой) (дата)	<u>и</u> 201 <u>/</u> г.
Рассмотрена и одобрена на заседани сервиса« <u>15</u> » <u>мая</u> 201 <u>9</u> г., пр	ии учёного солотокол № _	вета института технологи	ни, экономики и
Председатель учёного совета	Corner Ab	«15 » (дат	<u>га)</u> 201 <u>9</u> г.
Утверждена на заседании учёного с	овета ФГБОУ	' ВО «ВГСПУ»	
« <u>31</u> » <u>має</u> 201 <u>9</u> г., протокол			
Отметки о внесении изменений в	программу:		
Лист изменений №			
	(подпись)	(руководитель ОПОП)	(дата)
Лист изменений №			
	(подпись)	(руководитель ОПОП)	(дата)
Лист изменений №			
	(подпись)	(руководитель ОПОП)	(дата)
Разработчики: Кисляков Виталий Викторович, кан экономики образования и сервиса ФПрограмма дисциплины «Перспект	ргбоу во «в	гСПУ».	
требованиям ФГОС ВО по направле			

2

(с двумя профилями подготовки)» (утверждён приказом Министерства образования и науки РФ от 22 февраля 2018 г. N 125) и базовому учебному плану по направлению подготовки 44.03.05 «Педагогическое образование (с двумя профилями подготовки)» (профили

«Экономика», «Технология»), утверждённому Учёным советом ФГБОУ ВО «ВГСПУ» (от 31

мая 2019 г., протокол № 10).

1. Цель освоения дисциплины

Сформировать систему компетенций будущего учителя технологии для решения педагогических и культурно-просветительских задач в области современных технологических методов обработки, и использования конструкционных и специальных материалов.

2. Место дисциплины в структуре ОПОП

Дисциплина «Перспективные материалы и технологии» относится к базовой части блока дисциплин.

Для освоения дисциплины «Перспективные материалы и технологии» обучающиеся используют знания, умения, способы деятельности и установки, сформированные в ходе изучения дисциплин «Графика», «Детали машин и основы конструирования», «Домашняя экономика», «ИКТ и медиаинформационная грамотность», «Институциональная экономика», «История науки и техники», «История экономики и экономических учений», «Машиностроительное черчение», «Национальная экономика», «Основы делопроизводства», «Основы маркетинга», «Основы менеджмента», «Основы стандартизации, метрологии и сертификации», «Прикладная механика», «Техническая эстетика и дизайн», «Технологическое оборудование и бытовая техника», «Философия», «Экономика образования», «Экономическая теория», «Маркетинг образовательных услуг», «Налоги и налогообложение», «Налоговая политика государства», «Технологический практикум по обработке конструкционных материалов», «Технологический практикум по обработке тканей и пищевых продуктов», «Финансовая деятельность образовательных учреждений», «Экономика малых предприятий», «Экономика предприятий», прохождения практик «Учебная (практика по получению первичных профессиональных умений и навыков (технологическая))», «Учебная (практика по получению первичных умений и навыков научно-исследовательской деятельности)», «Учебная практика (технологическая)».

Освоение данной дисциплины является необходимой основой для последующего изучения дисциплин «Методика обучения технологии», «Основы исследований в технолого-экономическом образовании», «Основы предпринимательской деятельности», «Основы творческо-конструкторской деятельности», «Перспективные методы обучения технологии и экономики», «Технологии современного производства», «Декоративно-оформительское искусство», «Декоративно-прикладное творчество», «Инновационный менеджмент», «Маркетинг в предпринимательстве», «Обустройство и дизайн дома», «Организационная культура образовательного учреждения», «Планирование и прогнозирование экономических показателей», «Проектные технологии в образовании», «Психологические основы педагогической работы с детьми с трудностями обучения», «Ремонт и эксплуатация дома», «Стратегический менеджмент», «Финансы и кредит», «Художественная обработка материалов», прохождения практик «Научно-исследовательская работа», «Производственная (педагогическая) практика (преподавательская) ("Эк")».

3. Планируемые результаты обучения

В результате освоения дисциплины выпускник должен обладать следующими компетенциями:

- способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач (УК-1);
 - способностью использовать знания в области теории, практики и методики

преподавания технологии, общетехнических дисциплин и предпринимательства для постановки и решения профессиональных задач (ПКР-2).

В результате изучения дисциплины обучающийся должен:

знать

- безотходные и материалосберегающие технологии и их перспективность, специальные виды литья, улучшающие качество изделий и условия литейного производства, электрофизические, электрохимические и электроэрозионные методы обработки, современные способы сварки с использованием плазмы, электронного луча, лазера, ультразвука и т.п;
- основы порошковой металлургии, порошковые материалы и их назначение, высокочистые и композиционные материалы, области их применения;
- древесные материалы, свойства, способы обработки, защиты и отделки древесины, различные группы неметаллических материалов: пластмассы, резинотехнические изделия, лакокрасочные и клеящие материалы; их получение, свойства и технологии обработки;
- способы защиты от коррозии, технические устройства, применяемые в разных областях деятельности человека;

уметь

- выбрать конструкционный материал для проведении занятий по технологии в школе в зависимости от темы урока;
- организовать информацию о достижении науки и техники в области новых технологий и материалов;
- осуществлять профориентационную работу среди учащихся по сознательному выбору будущей специальности на основе знаний о перспективных материалах и технологий:
- решать простые, наиболее часто встречающиеся задачи теоретического и практического характера;

владеть

– актуализированными и закрепленными базовыми понятиями и приемами по разделам дисциплины, в том числе с использованием средств ИТ.

4. Объёмдисциплиныивидыучебнойработы

Вид учебной работы		Семестры
вид учеоной расоты	часов	7
Аудиторные занятия (всего)	40	40
В том числе:		
Лекции (Л)	10	10
Практические занятия (ПЗ)	20	20
Лабораторные работы (ЛР)	10	10
Самостоятельная работа	64	64
Контроль	4	4
Вид промежуточной аттестации		3ЧО
Общая трудоемкость часы	108	108
зачётные единицы	3	3

5.Содержание дисциплины

5.1. Содержание разделов дисциплины

Mo	Unintervenervice	Со поруголуго подната нисуучуучуу			
№ п/п	Наименование	Содержание раздела дисциплины			
11/11	разделадисциплины Безотходные и	1.1. Сырье и экономия сырья. Первичное и вторичное			
1	материалосберегающие	сырье. История материалов и технологий. Требования			
	технологии	к материалам и технологиям. Прямое восстановление			
	Textiosioi iii	железа из руд: конструкция шахтной печи и			
		технология получения губчатого железа. 1.2. Способы			
		повышения качества стали. Внепечное рафинирование:			
		вакуумирование в ковше и струе, циркуляционное			
		вакуумирование, обработка синтетическим шлаком.			
		Переплавные процессы: электрошлаковый, вакуумно-			
		дуговой, электронно-лучевой, плазменно-дуговой. 1.3.			
		Современные технологии: электронно-лучевая			
		обработка, плазменная обработка, ультразвуковая			
		обработка, высокоскоростная и лазерная технология.			
		Сравнительный анализ современных технологий. 1.4.			
		Современные способы сварки: диффузионная сварка,			
		сварка в защитных газах, термитная сварка и т.д.			
		Специальные виды литья. Литье в металлические			
		формы: литье в кокиль, литье под давлением;			
		центробежное литье; литье в оболочковые формы и по			
		выплавляемым моделям. Нанесение жаростойких и			
		износостойких покрытий. Наплавка: ручная и			
		плазменно-порошковая. Напыление: электродуговая и			
	П	газовая металлизация.			
2	Перспективные	2.1. Основы порошковой металлургии. Из истории			
	металлические материалы и	порошковой металлургии. Производство металлических порошков: физико-механические и			
	технология получения изделий из них	физико-химические способы. Форма порошков,			
	изделии из них	технологические свойства порошков. Формование			
		порошков: статическое, прерывное и непрерывное			
		прессование, гидростатическое и взврывное			
		прессование, мундштучное прессование и прокатка			
		порошков. Спекание порошков в твердой и жидкой			
		фазе. Порошковые материалы: высокотемпературные,			
		твердые сплавы, алмазно-металлические, пористые,			
		фрикционные, антифрикционные и т.д. 2.2			
		Композиционные материалы: дисперсно-упрочненные,			
		волокнистые, слоистые. Виды и свойства волокон, как			
		упрочнителей. Композиты на металлической и			
		неметаллической основе. Высокочистые металлы и			
		области их применения. Способы получения			
		высокочистых металлов: зонная плавка, вытягивание			
		монокристалла из расплава и т.д. Полупроводниковые			
		материалы. 2.3. Сверхпроводники и аморфные сплавы.			
		История сверхпроводимости. Свойства			
		сверхпроводников и их применение. Аморфные			
		металлические сплавы, их свойства и применение.			
		Технология получения аморфных сплавов: сверхбыстрая закалка разбрызгиванием, методом литья			
		с односторонним и многосторонним охлаждением.			

3	3. Перспективные	3.1. Строение и свойства древесины. Макростроение					
	неметаллические	древесины, химический состав, свойства и применение					
	материалы и технология	древесины. Виды древесных материалов: прессованная					
	получения изделий из них	древесина, пиломатериалы, древесные полуфабрикаты,					
		клееная древесина и древопластики. Пороки					
		древесины и способы защиты древесины, способы					
		обработки и отделки древесины. Преимущества и					
		недостатки древесины. 3.2. Пластмассы и технология					
		переработки их в изделия. Полимеры, их строение и					
		свойства. Состав пластмасс: связующие, наполнитель,					
		пластификатор, катализатор, краситель. Виды					
		пластмасс: термопластмассы, реактопласты и					
		газонаполненные пластмассы, их свойства и					
		применение. Технология переработки пластмасс в					
		вязко-текучем, высоко-эластичном и стеклообразном					
		состояниях. Преимущества и недостатки пластмасс.					
		3.3. Резино-технические материалы. Состав резины:					
		мягчитель, каучук, сера, краситель, наполнитель,					
		растворитель. Технология получения резиновых					
		смесей. Способы вулканизации. Виды резины и их					
		применение. 3.4. Стеклянные материалы. Состав					
		стекла: основные и вспомогательные материалы.					
		Технология варки стекла. Способы получения изделий					
		из стекла. Виды стекла: строительное, бытовое,					
		техническое, и применение. 3.5. Лакокрасочные и					
		клеящие материалы. Свойства и технология обработки.					
		Состав лакокрасочных материалов (ЛКМ):					
		пленкообразующие вещества, растворители, пигменты,					
		наполнители, сиккативы. Виды ЛКМ – лаки, эмали и					
		краски. Назначение и применение ЛКМ. Технология нанесения ЛКМ. Состав клея: растворитель,					
		наполнитель, пластификатор, отвердитель.					
		Классификация клеев: неорганические, органические и элементоорганические. Технология склеивания.					
4	Электрофизические и	4.1. Коррозия и методы борьбы с ней.					
4	электрофизические и электрохимические методы	Электрофизические методы: электроискровая,					
	обработки (ЭФЭХ).	электроимпульсная, Электрохимические методы:					
	Коррозия и методы защиты	полирование, электроабразивная, размерная обработка.					
	от нее	Анодно-механическая обработка. Коррозия и защита					
		от нее. Сущность коррозии. Виды коррозии и					
		коррозионных разрушений. Способы защиты от					
		коррозии: легирование, покрытия, обработка среды,					
		электрохимическая защита. Виды покрытий:					
		химические, металлические и неметаллические.					
	I .	I IIII I IIIII I IIIII I IIIII I IIIII I					

5.2. Количество часов и виды учебных занятий по разделам дисциплины

No	Наименование раздела	Лекц.	Практ.	Лаб.	CPC	Всего
Π/Π	дисциплины		зан.	зан.		
1	Безотходные и	3	6	3	16	28
	материалосберегающие					
	технологии					

2	Перспективные металлические	3	6	3	16	28
	материалы и технология					
	получения изделий из них					
3	3. Перспективные	3	6	3	16	28
	неметаллические материалы и					
	технология получения изделий					
	из них					
4	Электрофизические и	1	2	1	16	20
	электрохимические методы					
	обработки (ЭФЭХ). Коррозия и					
	методы защиты от нее					

6. Перечень основной и дополнительной учебной литературы

6.1. Основная литература

- 1. Старостин В.В. Материалы и методы нанотехнологий: учебное пособие/ Старостин В.В.— Электрон. текстовые данные.— М.: БИНОМ. Лаборатория знаний, 2012.— 431 с.— Режим доступа: http://www.iprbookshop.ru/4589.— ЭБС «IPRbooks».
- 2. Луценко О.В. Технология материалов: лабораторный практикум. Учебное пособие/ Луценко О.В., Яшуркаева Л.И.— Электрон. текстовые данные.— Белгород: Белгородский государственный технологический университет им. В.Г. Шухова, ЭБС АСВ, 2013.— 93 с.— Режим доступа: http://www.iprbookshop.ru/28410.— ЭБС «IPRbooks».

6.2. Дополнительная литература

- 1. Федосова Н.Л. Антикоррозионная защита металлов в строительстве/ Федосова Н.Л., Румянцева В.Е., Румянцева К.Е.— Электрон. текстовые данные.— Иваново: Ивановский государственный архитектурно-строительный университет, ЭБС АСВ, 2010.— 188 с.— Режим доступа: http://www.iprbookshop.ru/17725.— ЭБС «IPRbooks».
- 2. Михайлин Ю.А. Конструкционные полимерные композиционные материалы: учебное пособие/ Михайлин Ю.А.— Электрон. текстовые данные.— СПб.: Научные основы и технологии, 2010.— 822 с.— Режим доступа: http://www.iprbookshop.ru/13214.— ЭБС «IPRbooks».
- 3. Богодухов С.И. Курс материаловедения в вопросах и ответах: учебное пособие/ Богодухов С.И., Синюхин А.В., Козих Е.С.— Электрон. текстовые данные.— М.: Машиностроение, 2010.— 352 с.— Режим доступа: http://www.iprbookshop.ru/5121.— ЭБС «IPRbooks».
- 4. Сазонов К.Е. Материаловедение: руководство к лабораторным работам/ Сазонов К.Е.— Электрон. текстовые данные.— СПб.: Российский государственный гидрометеорологический университет, 2006.— 96 с.— Режим доступа: http://www.iprbookshop.ru/17932.— ЭБС «IPRbooks».
- 5. Чугуны: методические указания к лабораторной работе/ Электрон. текстовые данные.— Нижний Новгород: Нижегородский государственный архитектурно-строительный университет, ЭБС АСВ, 2010.— 13 с.— Режим доступа: http://www.iprbookshop.ru/16073.— ЭБС «IPRbooks».
- 6. Елагина О.Ю. Технологические методы повышения износостойкости деталей машин: учебное пособие/ Елагина О.Ю.— Электрон. текстовые данные.— М.: Логос, Университетская книга, 2009.— 488 с.— Режим доступа: http://www.iprbookshop.ru/9101.— ЭБС «IPRbooks».
- 7. Богодухов С.И. Технологические процессы в машиностроении: учебник/ Богодухов С.И., Бондаренко Е.В., Схиртладзе А.Г.— Электрон. текстовые данные.— М.:

Машиностроение, 2009.— 640 с.— Режим доступа: http://www.iprbookshop.ru/5165.— ЭБС «IPRbooks».

- 8. Двуличанская Н.Н. Композиционные материалы. Физико-химические свойства: учебное пособие/ Двуличанская Н.Н., Слынько Л.Е., Пясецкий В.Б.— Электрон. текстовые данные.— М.: Московский государственный технический университет имени Н.Э. Баумана, 2008.— 48 с.— Режим доступа: http://www.iprbookshop.ru/31427.— ЭБС «IPRbooks».
- 9. Ярославцев В.М. Обработка резанием полимерных композиционных материалов: учебное пособие/ Ярославцев В.М.— Электрон. текстовые данные.— М.: Московский государственный технический университет имени Н.Э. Баумана, 2012.— 184 с.— Режим доступа: http://www.iprbookshop.ru/31470.— ЭБС «IPRbooks».
- 10. Наноструктурные материалы: учебное пособие/ Электрон. текстовые данные.— М.: Техносфера, 2009.— 488 с.— Режим доступа: http://www.iprbookshop.ru/12730.— ЭБС «IPRbooks».

7. Ресурсы Интернета

Перечень ресурсов Интернета, необходимых для освоения дисциплины:

- 1. Электронная библиотечная система IPRbooks (http://www.iprbookshop.ru).
- 2. Википедия свободная энциклопедия (URL: http://ru.wikipedia.org).

8. Информационные технологии и программное обеспечение

Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем (при необходимости):

- 1. Офисный пакет (Microsoft Office или Open Office).
- 2. Технологии обработки текстовой информации.
- 3. Технологии обработки графической информации.
- 4. Технологии обработки видеоинформации.
- 5. Интернет-браузер Google Chrome.

9. Материально-техническая база

Для проведения учебных занятий по дисциплине «Перспективные материалы и технологии» необходимо следующее материально-техническое обеспечение:

- 1. Комплект мультимедийного презентационного оборудования.
- 2. Учебная аудитория для проведения лабораторных занятий, оснащенная набором учебной мебели, аудиторной доской и переносным комплексом мультимедийного презентационного оборудования.
- 3. Аудитория для проведения самостоятельной работы студентов с доступом к сети Интернет.

10. Методические указания для обучающихся по освоению дисциплины

Дисциплина «Перспективные материалы и технологии» относится к базовой части блока дисциплин. Программой дисциплины предусмотрено чтение лекций, проведение практических занятий и лабораторных работ. Промежуточная аттестация проводится в форме аттестации с оценкой.

Лекционные занятия направлены на формирование глубоких, систематизированных знаний по разделам дисциплины. В ходе лекций преподаватель раскрывает основные, наиболее сложные понятия дисциплины, а также связанные с ними теоретические и практические проблемы, даёт рекомендации по практическому освоению изучаемого

материала. В целях качественного освоения лекционного материала обучающимся рекомендуется составлять конспекты лекций, использовать эти конспекты при подготовке к практическим занятиям, промежуточной и итоговой аттестации.

Практические занятия являются формой организации педагогического процесса, направленной на углубление научно-теоретических знаний и овладение методами работы, в процессе которых вырабатываются умения и навыки выполнения учебных действий в сфере изучаемой науки. Практические занятия предполагают детальное изучение обучающимися отдельных теоретических положений учебной дисциплины. В ходе практических занятий формируются умения и навыки практического применения теоретических знаний в конкретных ситуациях путем выполнения поставленных задач, развивается научное мышление и речь, осуществляется контроль учебных достижений обучающихся.

При подготовке к практическим занятиям необходимо ознакомиться с теоретическим материалом дисциплины по изучаемым темам — разобрать конспекты лекций, изучить литературу, рекомендованную преподавателем. Во время самого занятия рекомендуется активно участвовать в выполнении поставленных заданий, задавать вопросы, принимать участие в дискуссиях, аккуратно и своевременно выполнять контрольные задания.

Лабораторная работа представляет собой особый вид индивидуальных практических занятий обучающихся, в ходе которых используются теоретические знания на практике, применяются специальные технические средства, различные инструменты и оборудование. Такие работы призваны углубить профессиональные знания обучающихся, сформировать умения и навыки практической работы в соответствующей отрасли наук. В процессе лабораторной работы обучающийся изучает практическую реализацию тех или иных процессов, сопоставляет полученные результаты с положениями теории, осуществляет интерпретацию результатов работы, оценивает возможность применения полученных знаний на практике.

При подготовке к лабораторным работам следует внимательно ознакомиться с теоретическим материалом по изучаемым темам. Необходимым условием допуска к лабораторным работам, предполагающим использованием специального оборудования и материалов, является освоение правил безопасного поведения при проведении соответствующих работ. В ходе самой работы необходимо строго придерживаться плана работы, предложенного преподавателем, фиксировать промежуточные результаты работы для отчета по лабораторной работе.

Контроль за качеством обучения и ходом освоения дисциплины осуществляется на основе рейтинговой системы текущего контроля успеваемости и промежуточной аттестации студентов. Рейтинговая система предполагает 100-балльную оценку успеваемости студента по учебной дисциплине в течение семестра, 60 из которых отводится на текущий контроль, а 40 — на промежуточную аттестацию по дисциплине. Критериальная база рейтинговой оценки, типовые контрольные задания, а также методические материалы по их применению описаны в фонде оценочных средств по дисциплине, являющемся приложением к данной программе.

11. Учебно-методическое обеспечение самостоятельной работы

Самостоятельная работа обучающихся является неотъемлемой частью процесса обучения в вузе. Правильная организация самостоятельной работы позволяет обучающимся развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, способствует формированию навыков совершенствования профессионального мастерства.

Самостоятельная работа обучающихся во внеаудиторное время включает в себя подготовку к аудиторным занятиям, а также изучение отдельных тем, расширяющих и углубляющих представления обучающихся по разделам изучаемой дисциплины. Такая работа может предполагать проработку теоретического материала, работу с научной

литературой, выполнение практических заданий, подготовку ко всем видам контрольных испытаний, выполнение творческих работ.

Учебно-методическое обеспечение для самостоятельной работы обучающихся по дисциплине представлено в рабочей программе и включает в себя:

- рекомендуемую основную и дополнительную литературу;
- информационно-справочные и образовательные ресурсы Интернета;
- оценочные средства для проведения текущего контроля и промежуточной аттестации по дисциплине.

Конкретные рекомендации по планированию и проведению самостоятельной работы по дисциплине «Перспективные материалы и технологии» представлены в методических указаниях для обучающихся, а также в методических материалах фондов оценочных средств.

12. Фонд оценочных средств

Фонд оценочных средств, включающий перечень компетенций с указанием этапов их формирования, описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания, типовые контрольные задания и методические материалы является приложением к программе учебной дисциплины.