МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Волгоградский государственный социально-педагогический университет» Факультет математики, информатики и физики Кафедра алгебры, геометрии и математического анализа

Математика

Программа учебной дисциплины

Направление 09.03.03 «Прикладная информатика» Профиль «Прикладная информатика»

очная форма обучения

Обсуждена на заседании кафедры алгебр « <u>26</u> » <u>03</u> 201 <u>9</u> г., протокол № <u>8</u>	-ani(20 co				
Заведующий кафедрой (полиць)	<u>Карта</u> (зав. к	шов В.К. афедрой)	«2 <u>6</u> »_	<i>03</i> (дата)	201 <u>9</u> г.
Рассмотрена и одобрена на заседании уч физики « <u>02</u> » <u>04</u> 201 <u>9</u> г., протог Председатель учёного совета <u>Серггев</u>	кол № <u>7</u>				
Утверждена на заседании учёного совет « <u>31</u> » 201 <u>9</u> г., протокол № <u>1</u>	<u>o</u>	ЗО «ВГСП	IУ»		
Лист изменений №		(<u> </u>	(дата)
	подпись)	(руководи	тель ОПОІ	.1)	(дата)
Лист изменений № (г	подпись)	(руководи	тель ОПО	П)	(дата)
Лист изменений № (г	подпись)	(руководи	итель ОПО	п)	(дата)
Разработчики: Расстригин Александр Леонидович, кан высшей математики и физики ФГБОУ I Программа дисциплины «Математика»	ВО «ВГСП соответст	У». зует требо	ваниям Ф	гос в	О по

Программа дисциплины «Математика» соответствует требованиям ФГОС ВО по направлению подготовки 09.03.03 «Прикладная информатика» (утверждён приказом Министерства образования и науки Российской Федерации от 19 сентября 2017 г. № 922) и базовому учебному плану по направлению подготовки 09.03.03 «Прикладная информатика» (профиль «Прикладная информатика»), утверждённому Учёным советом ФГБОУ ВО «ВГСПУ» (от 31 мая 2019 г., протокол № 10).

1. Цель освоения дисциплины

Формирование систематизированных знаний в области алгебры, геометрии и математического анализа, необходимых для понимания природы математических объектов.

2. Место дисциплины в структуре ОПОП

Дисциплина «Математика» относится к базовой части блока дисциплин.

Для освоения дисциплины «Математика» обучающиеся используют знания, умения, способы деятельности и установки, сформированные в ходе изучения дисциплин «Теория систем и системный анализ», «Введение в информатику», «Физика».

Освоение данной дисциплины является необходимой основой для последующего изучения дисциплин «Дискретная математика», «Исследование операций и методы оптимизации», «Проектирование информационных систем», «Теория вероятностей и математическая статистика», «Философия», «Экономика фирмы (предприятия)», «Экономическая теория», «Естественнонаучная картина мира», «История естествознания и техники», прохождения практик «Ознакомительная практика», «Технологическая (проектнотехнологическая) практика».

3. Планируемые результаты обучения

В результате освоения дисциплины выпускник должен обладать следующими компетенциями:

- способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач (УК-1);
- способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности (ОПК-1);
- способен анализировать и разрабатывать организационно-технические и экономические процессы с применением методов системного анализа и математического моделирования (ОПК-6).

В результате изучения дисциплины обучающийся должен:

знать

- основные положения алгебраической теории, а также положения, классические факты, утверждения и методы указанной предметной области;
 - основные положения аналитической геометрии;
 - основные положения теории пределов и непрерывности функции;
 - основные положения дифференциального исчисления функции одного переменного;
 - основные положения интегрального исчисления функции одной переменной;

уметь

- решать типовые задачи в указанной предметной области;
- вычислять пределы функций и исследовать функции одной переменной на непрерывность;
 - исследовать функцию одной переменной средствами дифференциального

исчисления;

– вычислять неопределенные и определенные интегралы;

владеть

- опытом решения систем линейных уравнений;
- аналитико-синтетическим методом поиска пути и решения задач школьного курса геометрии;
 - языком теории пределов;
 - методами вычисления производных и исследования функций;
 - методами интегрального исчисления функции одной переменной.

4. Объём дисциплины и виды учебной работы

Dry vyvo Kyvo V no Korvy	Всего	Семестры
Вид учебной работы	часов	1 / 2
Аудиторные занятия (всего)	130	58 / 72
В том числе:		
Лекции (Л)	46	20 / 26
Практические занятия (ПЗ)	84	38 / 46
Лабораторные работы (ЛР)	_	-/-
Самостоятельная работа	104	50 / 54
Контроль	90	36 / 54
Вид промежуточной аттестации		3ЧО / ЭК
Общая трудоемкость часы	324	144 / 180
зачётные единицы	9	4 / 5

5. Содержание дисциплины

5.1. Содержание разделов дисциплины

№	Наименование раздела	Содержание раздела дисциплины		
Π/Π	дисциплины			
1	Матрицы, определители,	Матрицы. Способы записи матриц. Сложение и		
	системы линейных	умножение матриц, умножение матрицы на число,		
	уравнений. Числовые поля	транспонирование. Определитель квадратной		
		матрицы. Минор и алгебраическое дополнение		
		элемента матрицы. Теорема о разложении		
		определителя по строке (столбцу). Системы линейных		
		уравнений. Преобразования систем линейных		
		уравнений приводящие к равносильным системам		
		линейных уравнений. Метод последовательного		
		исключения неизвестных в системе линейных		
		уравнений. Число решений системы линейных		
		уравнений. Теорема Крамера. Системы однородных		
		линейных уравнений. Элементарные преобразования		
		матрицы и ее ранг. Теорема об инвариантности ранга		
		матрицы относительно элементарных преобразований.		
		Необходимые и достаточные условия совместности		
		системы линейных уравнений (теорема Кронекера-		
		Капелли). Общее решение системы линейных		
		уравнений. Матрица, обратная данной квадратной		
		матрице. Критерий обратимости матрицы. Способы		

		вычисления обратной матрицы. Поле. Построение				
		поля комплексных чисел. Алгебраическая форма				
		комплексного числа. Норма и модуль комплексного				
		числа, их свойства. Тригонометрическая форма				
		комплексного числа. Действия над комплексными				
		числами. Корни п-й степени из 1, их свойства.				
2	Аналитическая геометрия	Свойства направленных отрезков. Вектор.				
	на плоскости и в	Произведение действительного числа на вектор.				
	пространстве	Сложение векторов. Скалярное произведение				
		векторов. Свойства. Аффинная система координат на				
		плоскости. Координаты точки, делящей отрезок в				
		заданном отношении. Прямоугольная декартова				
		система координат. Скалярное произведение векторов,				
		заданных своими координатами. Расстояние между				
		двумя точками. Полярная система координат. Переход				
		от полярной системы координат к прямоугольной				
		декартовой. Преобразования прямоугольной				
		декартовой системы координат. Различные виды				
		уравнений прямой на плоскости. Геометрический				
		смысл коэффициентов в общем уравнении прямой.				
		Взаимное расположение двух прямых на плоскости.				
		Формула расстояния от точки до прямой в				
		прямоугольной декартовой системе координат.				
		Эллипс, гипербола и парабола. Канонические				
		уравнения. Аффинная и прямоугольная декартова				
		системы координат в пространстве. Векторное				
		произведение двух векторов. Свойства. Вычисление				
		векторного произведения. Смешанное произведение трех векторов. Свойства. Вычисление смешанного				
		произведения. Различные виды уравнений плоскости.				
		Геометрический смысл коэффициентов в общем				
		уравнении плоскости. Взаимное расположение двух				
		плоскостей. Различные виды уравнения прямой в				
		пространстве. Взаимное расположение двух прямых				
		заданных своими параметрическими уравнениями.				
		Взаимное расположение прямой и плоскости. Формула				
		расстояния от точки до плоскости и прямой, заданных				
		в прямоугольной декартовой системе координат.				
3	Введение в анализ	Предмет математического анализа. Связь со школьным				
		курсом математики. Множество R действительных				
		чисел. Ограниченные и неограниченные множества.				
		Промежутки. Функции и их общие свойства. Обратная				
		функция. Действительная функция действительной				
		переменной. График функции. Числовые				
		последовательности. Предел. Бесконечно малые и их				
		сравнение. Бесконечно большие. Непрерывность.				
		Точки разрыва.				
4	Дифференциальное	Производная и дифференциал. Дифференцируемость				
	исчисление функций одной	функции. Производные и дифференциалы высших				
	переменной	порядков. Параметрически заданные функции и их				
		дифференцирование. Касательная к кривой. Теоремы				
		Ролля, Лагранжа и Коши. Правило Лопиталя.				

		Максимум и минимум. Необходимое и достаточные условия экстремума. Нахождение наибольших и наименьших значений. Выпуклые функции. Точки перегиба. Асимптоты. Применение дифференциального исчисления к построению графиков функций.
5	Интегральное исчисление функций одной переменной	Неопределенный интеграл. Интегрирование по частям. Интегрирование заменой переменной. Интегрирование рациональных функций. Интегрирование простейших иррациональных и трансцендентных функций. Определенный интеграл. Задачи, приводящие к понятию определенного интеграла. Необходимое и достаточное условие интегрируемости. Основные свойства определенного интеграла. Формула Ньютона-Лейбница. Интегрирование по частям и заменой переменной. Приложения определенного интеграла. Несобственные интегралы. Несобственные интегралы по бесконечному промежутку. Несобственные интегралы от неограниченных функций. Условия сходимости.

5.2. Количество часов и виды учебных занятий по разделам дисциплины

No	Наименование раздела	Лекц.	Практ.	Лаб.	CPC	Всего
Π/Π	дисциплины		зан.	зан.		
1	Матрицы, определители,	10	19	_	25	54
	системы линейных уравнений.					
	Числовые поля					
2	Аналитическая геометрия на	10	19	_	25	54
	плоскости и в пространстве					
3	Введение в анализ	9	16	-	18	43
4	Дифференциальное исчисление	8	15	-	18	41
	функций одной переменной					
5	Интегральное исчисление	9	15	_	18	42
	функций одной переменной					

6. Перечень основной и дополнительной учебной литературы

6.1. Основная литература

- 1. Беклемишев, Д.В. Курс аналитической геометрии и линейной алгебры : учебник / Д.В. Беклемишев. 16-е изд., стер. Санкт-Петербург : Лань, 2019. 448 с. ISBN 978-5-8114-1844-2. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/112054 (дата обращения: 21.12.2019). Режим доступа: для авториз. Пользователей..
- 2. Фихтенгольц, Г.М. Курс дифференциального и интегрального исчисления : учебник : в 3 томах / Г.М. Фихтенгольц. 13-е изд., стер. Санкт-Петербург : Лань, [б. г.]. Том 1 2019. 608 с. ISBN 978-5-8114-3993-5. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/113948 (дата обращения: 21.12.2019). Режим доступа: для авториз. Пользователей..
- 3. Фихтенгольц, Г.М. Курс дифференциального и интегрального исчисления : учебник : в 3 томах / Г.М. Фихтенгольц. 13-е изд., стер. Санкт-Петербург : Лань, [б. г.]. Том 2

- 2019. 800 с. ISBN 978-5-8114-3994-2. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/113949 (дата обращения: 21.12.2019). Режим доступа: для авториз. Пользователей..
- 4. Кудрявцев, Л.Д. Краткий курс математического анализа : учебник / Л.Д. Кудрявцев. 4-е изд., перераб. Москва : ФИЗМАТЛИТ, [б. г.]. Том 1 : Дифференциальное и интегральное исчисления функций одной переменной. Ряды 2015. 444 с. ISBN 978-5-9221-1585-8. Текст : электронный // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/71994 (дата обращения: 21.12.2019). Режим доступа: для авториз. Пользователей.

6.2. Дополнительная литература

- 1. Клетеник, Д.В. Сборник задач по аналитической геометрии : учебное пособие / Д.В. Клетеник ; под редакцией Н. В. Ефимова. 17-е изд., стер. Санкт-Петербург : Лань, 2020. 224 с. ISBN 978-5-8114-1051-4. Текст : электронный // Лань : электроннобиблиотечная система. URL: https://e.lanbook.com/book/130489 (дата обращения: 21.12.2019). Режим доступа: для авториз. Пользователей..
- 2. Черненко В.Д. Высшая математика в примерах и задачах. Том 1 [Электронный ресурс]: учебное пособие для вузов/ Черненко В.Д.— Электрон. текстовые данные.— СПб.: Политехника, 2016.— 713 с.— Режим доступа: http://www.iprbookshop.ru/59550.html.— ЭБС «IPRbooks»..
- 3. Черненко В.Д. Высшая математика в примерах и задачах. Том 2 [Электронный ресурс]: учебное пособие для вузов/ Черненко В.Д.— Электрон. текстовые данные.— СПб.: Политехника, 2016.— 572 с.— Режим доступа: http://www.iprbookshop.ru/59560.html.— ЭБС «IPRbooks».

7. Ресурсы Интернета

Перечень ресурсов Интернета, необходимых для освоения дисциплины:

- 1. Электронная библиотечная система Лань. URL: https://e.lanbook.com.
- 2. Электронная библиотечная система IPRbooks. URL: http://iprbookshop.ru.

8. Информационные технологии и программное обеспечение

Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем (при необходимости):

1. Офисный пакет Open Office.

9. Материально-техническая база

Для проведения учебных занятий по дисциплине «Математика» необходимо следующее материально-техническое обеспечение:

- 1. Учебная аудитория ауд. 2226, 2228, 2229.
- 2. Аудитория с мультимедийной поддержкой ауд. 2207, 2230.

10. Методические указания для обучающихся по освоению дисциплины

Дисциплина «Математика» относится к базовой части блока дисциплин. Программой дисциплины предусмотрено чтение лекций и проведение практических занятий. Промежуточная аттестация проводится в форме аттестации с оценкой, экзамена.

Лекционные занятия направлены на формирование глубоких, систематизированных

знаний по разделам дисциплины. В ходе лекций преподаватель раскрывает основные, наиболее сложные понятия дисциплины, а также связанные с ними теоретические и практические проблемы, даёт рекомендации по практическому освоению изучаемого материала. В целях качественного освоения лекционного материала обучающимся рекомендуется составлять конспекты лекций, использовать эти конспекты при подготовке к практическим занятиям, промежуточной и итоговой аттестации.

Практические занятия являются формой организации педагогического процесса, направленной на углубление научно-теоретических знаний и овладение методами работы, в процессе которых вырабатываются умения и навыки выполнения учебных действий в сфере изучаемой науки. Практические занятия предполагают детальное изучение обучающимися отдельных теоретических положений учебной дисциплины. В ходе практических занятий формируются умения и навыки практического применения теоретических знаний в конкретных ситуациях путем выполнения поставленных задач, развивается научное мышление и речь, осуществляется контроль учебных достижений обучающихся.

При подготовке к практическим занятиям необходимо ознакомиться с теоретическим материалом дисциплины по изучаемым темам — разобрать конспекты лекций, изучить литературу, рекомендованную преподавателем. Во время самого занятия рекомендуется активно участвовать в выполнении поставленных заданий, задавать вопросы, принимать участие в дискуссиях, аккуратно и своевременно выполнять контрольные задания.

Контроль за качеством обучения и ходом освоения дисциплины осуществляется на основе рейтинговой системы текущего контроля успеваемости и промежуточной аттестации студентов. Рейтинговая система предполагает 100-балльную оценку успеваемости студента по учебной дисциплине в течение семестра, 60 из которых отводится на текущий контроль, а 40 — на промежуточную аттестацию по дисциплине. Критериальная база рейтинговой оценки, типовые контрольные задания, а также методические материалы по их применению описаны в фонде оценочных средств по дисциплине, являющемся приложением к данной программе.

11. Учебно-методическое обеспечение самостоятельной работы

Самостоятельная работа обучающихся является неотъемлемой частью процесса обучения в вузе. Правильная организация самостоятельной работы позволяет обучающимся развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, способствует формированию навыков совершенствования профессионального мастерства.

Самостоятельная работа обучающихся во внеаудиторное время включает в себя подготовку к аудиторным занятиям, а также изучение отдельных тем, расширяющих и углубляющих представления обучающихся по разделам изучаемой дисциплины. Такая работа может предполагать проработку теоретического материала, работу с научной литературой, выполнение практических заданий, подготовку ко всем видам контрольных испытаний, выполнение творческих работ.

Учебно-методическое обеспечение для самостоятельной работы обучающихся по дисциплине представлено в рабочей программе и включает в себя:

- рекомендуемую основную и дополнительную литературу;
- информационно-справочные и образовательные ресурсы Интернета;
- оценочные средства для проведения текущего контроля и промежуточной аттестации по дисциплине.

Конкретные рекомендации по планированию и проведению самостоятельной работы по дисциплине «Математика» представлены в методических указаниях для обучающихся, а также в методических материалах фондов оценочных средств.

12. Фонд оценочных средств

Фонд оценочных средств, включающий перечень компетенций с указанием этапов их формирования, описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания, типовые контрольные задания и методические материалы является приложением к программе учебной дисциплины.