МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Волгоградский государственный социально-педагогический университет» Факультет математики, информатики и физики Кафедра алгебры, геометрии и математического анализа

«УТВЕРЖДАЮ»

Проректор но учебной работе

Ю А. Жадаев

2019 г.

Теория систем и системный анализ

Программа учебной дисциплины

Направление 09.03.03 «Прикладная информатика» Профиль «Прикладная информатика»

очная форма обучения

Обсуждена на заседании кафедры ал « <u>26</u> » <u>03</u> 201 <u>9</u> г., протокол М	<u>8</u>				
Заведующий кафедрой (подпись)	Карма (зав. н	а шов В. К. сафедрой)	« <u>26</u> » _	<i>DЗ</i> (дата)	_201 <u>_</u> г.
Рассмотрена и одобрена на заседани физики « <u>O.</u> 2 » O <u>f</u> 201 <u>_</u> 9 г. , пр	оотокол № <u>?</u>				
Председатель учёного совета Сурга	CeeBAH.	подпись)	« <u>02</u> »_	<i>ОЧ</i> (дата)	_201 <u>Я</u> г.
Утверждена на заседании учёного с « <u>31</u> » 201 <u></u>	овета ФГБОУ № <u>10</u>	ВО «ВГСП	У»		
Отметки о внесении изменений в	программу:		av. 2015.)		
Лист изменений №	(подпись)	(руководит	ель ОПОІ	ī) —	(дата)
Лист изменений №	(подпись)	(руководит	гель ОПОІ	<u></u>	(дата)
Лист изменений №	(подпись)	(руководит	гель ОПОІ	<u> </u>	(дата)

Разработчики:

Астахова Наталья Александровна, кандидат педагогических наук, доцент кафедры высшей математики и физики ФГБОУ ВО «ВГСПУ».

Программа дисциплины «Теория систем и системный анализ» соответствует требованиям ФГОС ВО по направлению подготовки 09.03.03 «Прикладная информатика» (утверждён приказом Министерства образования и науки Российской Федерации от 19 сентября 2017 г. № 922) и базовому учебному плану по направлению подготовки 09.03.03 «Прикладная информатика» (профиль «Прикладная информатика»), утверждённому Учёным советом ФГБОУ ВО «ВГСПУ» (от 31 мая 2019 г., протокол № 10).

1. Цель освоения дисциплины

Формирование систематизированных знаний об основных концепциях теории систем и методах системного анализа.

2. Место дисциплины в структуре ОПОП

Дисциплина «Теория систем и системный анализ» относится к базовой части блока дисциплин.

Освоение данной дисциплины является необходимой основой для последующего изучения дисциплин «Исследование операций и методы оптимизации», «Математика», «Проектирование информационных систем», «Теория вероятностей и математическая статистика», «Философия», «Экономика фирмы (предприятия)», «Экономическая теория», «Естественнонаучная картина мира», «История естествознания и техники», прохождения практик «Ознакомительная практика», «Технологическая (проектно-технологическая) практика».

3. Планируемые результаты обучения

В результате освоения дисциплины выпускник должен обладать следующими компетенциями:

- способен осуществлять поиск, критический анализ и синтез информации, применять системный подход для решения поставленных задач (УК-1);
- способен анализировать и разрабатывать организационно-технические и экономические процессы с применением методов системного анализа и математического моделирования (ОПК-6).

В результате изучения дисциплины обучающийся должен:

знать

- задачи системного анализа, основные определения;
- основные понятия о системном аналимзе;
- базовые определения по теории систем, основные признаки систем;
- определения функционирования и развития системы, мер информации Хартли и Шеннона;
- определения цели функции и задачи управления системой, понятие цикла управления;
 - основные свойства моделей, понятие цикла моделирования;
 - специфику компьютерного моделирования, этапы компьютерного мделирования;

уметь

- анализировать систему;
- вычислять меры информации;
- классифицировать виды управления; определять функции управления;
- классифицированть модели;
- реализовать каждый этап компьютерного моделирования;

владеть

- приемами использования понятий гибкости и управляемости системы, большой и сложной системы при решении задач;
- методами компьютерного моделирования на основе специальных прикладных программных пакетов.

4. Объём дисциплины и виды учебной работы

Duy yunguni nagamy	Всего	Семестры
Вид учебной работы	часов	1
Аудиторные занятия (всего)	72	72
В том числе:		
Лекции (Л)	26	26
Практические занятия (ПЗ)	46	46
Лабораторные работы (ЛР)	_	_
Самостоятельная работа	72	72
Контроль	36	36
Вид промежуточной аттестации		ЭК
Общая трудоемкость часы	180	180
зачётные единицы	5	5

5. Содержание дисциплины

5.1. Содержание разделов дисциплины

No	Наименование раздела	Содержание раздела дисциплины
п/п	•	содержание раздела днецинания
	дисциплины	п
1	Основные понятия	Понятие о системном анализе. Два подхода в изучении
		системного анализа. Задачи системного анализа.
		Некоторые определения системного анализа. Три
		ветви науки, изучающей системы.
2	Основные положения	Базовые определения: определение системы,
	теории систем	подсистемы, состояния системы, цели, задачи и так
		далее. Основные признаки системы. Этапы анализа
		системы.
3	Закономерности	Понятие развития и функционирование систем.
	функционирования систем.	Гибкость системы. Регулируемость системы. Меры
	Информационное	информации Р.Хартли и К.Шеннона
	содержание систем.	
	Различие понятий большой	
	и сложной систем.	
4	Управление системой	Цели, функции и задачи управления системой. Цикл
	1	управления. Организация управления
5	Модель и моделирование	Типы и классификация моделей. Основные свойства
	систем	моделей. Цикл моделирования системы.
6	Компьютерное	Роль компьютера. Этапы компьютерного
	моделирование	моделирования.

5.2. Количество часов и виды учебных занятий по разделам дисциплины

№	Наименование раздела	Лекц.	Практ.	Лаб.	CPC	Всего
Π/Π	дисциплины		зан.	зан.		

1	Основные понятия	3	7	_	12	22
2	Основные положения теории	3	7	_	12	22
	систем					
3	Закономерности	5	8	_	12	25
	функционирования систем.					
	Информационное содержание					
	систем. Различие понятий					
	большой и сложной систем.					
4	Управление системой	5	8	_	12	25
5	Модель и моделирование	5	8	_	12	25
	систем					
6	Компьютерное моделирование	5	8	_	12	25

6. Перечень основной и дополнительной учебной литературы

6.1. Основная литература

- 1. Крюков С.В. Системный анализ: теория и практика [Электронный ресурс]: учебное пособие/ Крюков С.В.— Электрон. текстовые данные.— Ростов-на-Дону: Южный федеральный университет, 2011.— 228 с.— Режим доступа: http://www.iprbookshop.ru/47127.html.— ЭБС «IPRbooks».
- 2. Системный анализ, оптимизация и принятие решений [Электронный ресурс]: методические указания и задания для самостоятельной работы/ Электрон. текстовые данные.— Липецк: Липецкий государственный технический университет, ЭБС ACB, 2014.— 17 с.— Режим доступа: http://www.iprbookshop.ru/55156.html.— ЭБС «IPRbooks».

6.2. Дополнительная литература

- 1. Алексеенко В.Б. Основы системного анализа [Электронный ресурс]: учебное пособие/ Алексеенко В.Б., Красавина В.А.— Электрон. текстовые данные.— М.: Российский университет дружбы народов, 2010.— 172 с.— Режим доступа: http://www.iprbookshop.ru/11398.html.— ЭБС «IPRbooks».
- 2. Балаганский И.А. Прикладной системный анализ [Электронный ресурс]: учебное пособие/ Балаганский И.А.— Электрон. текстовые данные.— Новосибирск: Новосибирский государственный технический университет, 2013.— 120 с.— Режим доступа: http://www.iprbookshop.ru/45429.html.— ЭБС «IPRbooks».

7. Ресурсы Интернета

Перечень ресурсов Интернета, необходимых для освоения дисциплины:

- 1. Http://www.ikfia.ysn.ru/lektsii-i-obzory-dlya-studentov.html#учебники-и-другие-книги-по-математике.
 - 2. Http://mathprofi.absolom.ru.
 - 3. Http://www.pm298.ru/mkanaliz.php.

8. Информационные технологии и программное обеспечение

Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем (при необходимости):

1. Open Office.

9. Материально-техническая база

Для проведения учебных занятий по дисциплине «Теория систем и системный анализ» необходимо следующее материально-техническое обеспечение:

- 1. Учебная аудитория с мультимедийной поддержкой ауд. 2207.
- 2. Компьютерный класс ауд. 2215.

10. Методические указания для обучающихся по освоению дисциплины

Дисциплина «Теория систем и системный анализ» относится к базовой части блока дисциплин. Программой дисциплины предусмотрено чтение лекций и проведение практических занятий. Промежуточная аттестация проводится в форме экзамена.

Лекционные занятия направлены на формирование глубоких, систематизированных знаний по разделам дисциплины. В ходе лекций преподаватель раскрывает основные, наиболее сложные понятия дисциплины, а также связанные с ними теоретические и практические проблемы, даёт рекомендации по практическому освоению изучаемого материала. В целях качественного освоения лекционного материала обучающимся рекомендуется составлять конспекты лекций, использовать эти конспекты при подготовке к практическим занятиям, промежуточной и итоговой аттестации.

Практические занятия являются формой организации педагогического процесса, направленной на углубление научно-теоретических знаний и овладение методами работы, в процессе которых вырабатываются умения и навыки выполнения учебных действий в сфере изучаемой науки. Практические занятия предполагают детальное изучение обучающимися отдельных теоретических положений учебной дисциплины. В ходе практических занятий формируются умения и навыки практического применения теоретических знаний в конкретных ситуациях путем выполнения поставленных задач, развивается научное мышление и речь, осуществляется контроль учебных достижений обучающихся.

При подготовке к практическим занятиям необходимо ознакомиться с теоретическим материалом дисциплины по изучаемым темам — разобрать конспекты лекций, изучить литературу, рекомендованную преподавателем. Во время самого занятия рекомендуется активно участвовать в выполнении поставленных заданий, задавать вопросы, принимать участие в дискуссиях, аккуратно и своевременно выполнять контрольные задания.

Контроль за качеством обучения и ходом освоения дисциплины осуществляется на основе рейтинговой системы текущего контроля успеваемости и промежуточной аттестации студентов. Рейтинговая система предполагает 100-балльную оценку успеваемости студента по учебной дисциплине в течение семестра, 60 из которых отводится на текущий контроль, а 40 — на промежуточную аттестацию по дисциплине. Критериальная база рейтинговой оценки, типовые контрольные задания, а также методические материалы по их применению описаны в фонде оценочных средств по дисциплине, являющемся приложением к данной программе.

11. Учебно-методическое обеспечение самостоятельной работы

Самостоятельная работа обучающихся является неотъемлемой частью процесса обучения в вузе. Правильная организация самостоятельной работы позволяет обучающимся развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, способствует формированию навыков совершенствования профессионального мастерства.

Самостоятельная работа обучающихся во внеаудиторное время включает в себя подготовку к аудиторным занятиям, а также изучение отдельных тем, расширяющих и углубляющих представления обучающихся по разделам изучаемой дисциплины. Такая работа может предполагать проработку теоретического материала, работу с научной

литературой, выполнение практических заданий, подготовку ко всем видам контрольных испытаний, выполнение творческих работ.

Учебно-методическое обеспечение для самостоятельной работы обучающихся по дисциплине представлено в рабочей программе и включает в себя:

- рекомендуемую основную и дополнительную литературу;
- информационно-справочные и образовательные ресурсы Интернета;
- оценочные средства для проведения текущего контроля и промежуточной аттестации по дисциплине.

Конкретные рекомендации по планированию и проведению самостоятельной работы по дисциплине «Теория систем и системный анализ» представлены в методических указаниях для обучающихся, а также в методических материалах фондов оценочных средств.

12. Фонд оценочных средств

Фонд оценочных средств, включающий перечень компетенций с указанием этапов их формирования, описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания, типовые контрольные задания и методические материалы является приложением к программе учебной дисциплины.