ТЕОРИЯ ФУНКЦИЙ КОМПЛЕКСНОГО ПЕРЕМЕННОГО

1. Цель освоения дисциплины

Формирование систематизированных знаний по теории функций комплексного переменного.

2. Место дисциплины в структуре ОПОП

Дисциплина «Теория функций комплексного переменного» относится к вариативной части блока дисциплин и является дисциплиной по выбору.

Для освоения дисциплины «Теория функций комплексного переменного» обучающиеся используют знания, умения, способы деятельности и установки, сформированные в ходе изучения дисциплин «Графы и их приложения», «Дополнительные главы математического анализа», «Естественнонаучная картина мира», «История математики», «Методика использования интерактивных средств при обучении математике», «Методика обучения математике на углубленном уровне», «Методика работы с одаренными детьми при изучении математики», «Основные алгебраические системы», «Основы теории решеток», «Расширения полей», «Специализированные математические пакеты», «Физика», «Цифровая дидактика математического образования».

Освоение данной дисциплины является необходимой основой для последующего изучения дисциплин «Графы и их приложения», «Дополнительные главы математического анализа», «История математики», «Методика обучения математике на углубленном уровне», «Методика работы с одаренными детьми при изучении математики», «Основные алгебраические системы», «Основы теории решеток», «Расширения полей», прохождения практики «Преддипломная практика».

3. Планируемые результаты обучения

В результате освоения дисциплины выпускник должен обладать следующими компетенциями:

– владеет математикой как универсальным языком науки, средством моделирования явлений и процессов в естественных, социальных и образовательных системах (ПКР-1).

В результате изучения дисциплины обучающийся должен:

знать

- определение комплексных чисел, функцй комплексного переменного и их геометрический смысл;
- определение числовой последовательности и числового ряда, признаки сходимости числовых рядов, определение предела и непрерывности функции, их свойства;
- определение комплексной дифференцируемости функции и условия Коши-Римана, геометрический смысл модуля и аргумента производной;
- определение и свойства аналитической функции;
- определение и свойства контурного интеграла, формулу и теорему Коши;
- определение и свойства степенных рядов, рядов Лорана и Тейлора, равномерной сходимости, определение вычета;
- определение вычета;

уметь

- производить типовые операции над комплексными числами (в т.ч. отделять вещественную часть комплексной функции от мнимой);
- исследовать числовой ряд на сходимость;
- вычислять производные функций (в том числе и аналитических функций), проверять условия Коши-Римана;

- вычислять производные аналитических функций, проверять условия Коши-Римана;
- вычислять контурные интегралы от функций комплексного переменнного и аналитических функций;
- исследовать степенные ряды на сходимость, вычислять вычеты;

владеть

- приемами представления комплексных чисел в различных формах;
- приемами вычисления пределов и исследования функции на непрерывность;
- опытом нахождения производных функций;
- приемами исследования функций на аналитичность;
- опытом нахождения первообразной от аналитической функции в односвязной области;
- приемами разложения аналитических функций в ряды Лорана и Тейлора.

4. Общая трудоёмкость дисциплины и её распределение

количество зачётных единиц -4,

общая трудоёмкость дисциплины в часах -144 ч. (в т. ч. аудиторных часов -20 ч., CPC-124 ч.),

распределение по семестрам -5 курс, зима, 5 курс, лето, 6 курс, зима, 6 курс, лето, форма и место отчётности - зачёт (5 курс, зима), зачёт (6 курс, лето).

5. Краткое содержание дисциплины

Функции комплексного переменного.

Комплексные числа, алгебраическая, тригонометрическая и показательная формы.

Геометрический смысл. Операции над числами. Функции комплексного переменного. Вещественная и мнимая части.

Предел и непрерывность функции комплексного переменного. Числовые последовательности. Предел. Числовые ряды. Признаки сходимости Предел и непрерывность функции

Дифференцирование функции комплексного переменного. Понятие аналитической функции. Комплексная дифференцируемость. Условия Коши-Римана. Геометрический смысл модуля и аргумента производной. Аналитичность.

Интегрирование функции комплексного переменного. Теорема Коши. Контурный интеграл. Теорема Коши, формула Коши.

Ряды Тейлора и Лорана. Вычеты и их приложе-ния..

Функциональные ряды. Равномерная сходимость. Степенные ряды. Ряд Тейлора. Ряд Лорана. Вычеты.

6. Разработчик

Жуков Борис Александрович, доктор технических наук, профессор кафедры высшей математики и физики ФГБОУ ВО "ВГСПУ".