ЕСТЕСТВЕННОНАУЧНАЯ КАРТИНА МИРА

1. Цель освоения дисциплины

Формирование научного мировоззрения (на основе осознания принципов и закономерностей развития природы — от микромира до Вселенной и человека) и готовности использовать знания о современной естественнонаучной картине мира в образовательной и профессиональной деятельности.

2. Место дисциплины в структуре ОПОП

Дисциплина «Естественнонаучная картина мира» относится к вариативной части блока дисциплин.

Освоение данной дисциплины является необходимой основой для последующего изучения дисциплин «Графы и их приложения», «Дополнительные главы математического анализа», «История математики», «Методика использования интерактивных средств при обучении математике», «Методика обучения математике на углубленном уровне», «Методика работы с одаренными детьми при изучении математики», «Основные алгебраические системы», «Основы теории решеток», «Расширения полей», «Специализированные математические пакеты», «Теория функций комплексного переменного», «Физика», «Цифровая дидактика математического образования», прохождения практики «Преддипломная практика».

3. Планируемые результаты обучения

В результате освоения дисциплины выпускник должен обладать следующими компетенциями:

– владеет математикой как универсальным языком науки, средством моделирования явлений и процессов в естественных, социальных и образовательных системах (ПКР-1).

В результате изучения дисциплины обучающийся должен:

знать

- основные характеристики естественнонаучной картины мира, место и роль человека в природе;
- структурные уровни организации материи, интегральные концепции естествознания;
- уровни организации живого, особенности человека и социально-экономических систем;

уметь

- применять естественнонаучные знания в профессиональной деятельности;
- применять системный и синергетический подходы в профессиональной деятельности;
- применять естественнонаучные знания в пропаганде защиты природы;

владеть

- основными методами накопления и обработки информации;
- основными методами обработки информации и получения новых знаний;
- методами математической обработки информации, теоретического и экспериментального исследования.

4. Общая трудоёмкость дисциплины и её распределение

количество зачётных единиц -2, общая трудоёмкость дисциплины в часах -72 ч. (в т. ч. аудиторных часов -10 ч., CPC-62 ч.), распределение по семестрам -1 курс, зима, 1 курс, уст.,

5. Краткое содержание дисциплины

Естествознание как составная часть культуры.

Естествознание как составная часть культуры. Структура науки и ее функции. Эволюция научного метода и естественнонаучной картины мира. Основные концепции естествознания: космологические, геологические, физические, химические, биологические, антропологические, социальные. Культура материальная и духовная. Исторические стадии познания природы. Естествознание как составная часть культуры. Естественнонаучная и гуманитарная культуры. Наука в духовной культуре общества. Научный метод познания мира. Соотношение науки, философии, религии. Критерий и формы научности. Научные и ненаучные формы познания. Научные организации, журналы, премии. Становление естественнонаучной картины мира. Пространство и время в современном естествознании. Измерение времени. Календарь. Субстанциальная и реляционная, циклическая и линейная концепции времени. Принципы относительности

Структурные уровни организации материи.

Структурные уровни организации материи. Макромир, микромир, мегамир. Формы существования материи. Вещество, поле, физический вакуум. Корпускулярная и континуальная концепции описания природы. Макромир и классическое естествознание. Взаимодействие, близкодействие, дальнодействие. Электромагнитная картина мира. Фундаментальные взаимодействия: гравитационное, электромагнитное, сильное, слабое. Принципы описания микромира. Волны энергии, материи, вероятности. Принципы симметрии. Законы сохранения. Принципы суперпозиции, неопределенности, дополнительности. Динамические и статистические закономерности в природе. Структура и эволюция мегамира. Теория Большого Взрыва. Строение и эволюция звезд. Синтез химических элементов. Антропный принцип. Происхождение Земли и планет. Проблемы поиска внеземных цивилизаций. Глобальный эволюционизм, синергетика. Принципы построения и организации современного научного знания: интегральные концепции современного естествознания: глобальный эволюционизм, системность и самоорганизация, историчность. Системный и синергетический подходы. Основные понятия синергетики. Неравновесные макросистемы. Фазы развития системы. Бифуркации и флуктуации. Порядок и беспорядок в природе. Динамический хаос. Принцип возрастания энтропии в замкнутых системах. Негэнтропийные тенденции в системах с активными элементами

Организация и устойчивость биосферы.

Методы и концепции познания в химии. Анализ, синтез. Органическая химия. Теория неравновесных каталитических систем. Биологические уровни организации материи. Живая и неживая материя. Теории происхождения жизни на Земле и во Вселенной. Уровни организации живого. Принцип самоорганизации в живой природе. Несводимость закономерностей органической материи высшего порядка к закономерностям низшего порядка, изучаемым атомной физикой. Организация и устойчивость биосферы. Биосфера и космические циклы. Изменчивость, наследственность, отбор. Альтернативные теории эволюции. Человек как предмет естественнонаучного познания Особенности человека и социально-экономических систем. Генетические и экологические аспекты эволюции человека. Мозг и высшая нервная деятельность. Зарождение и развитие цивилизации. Концепция ноосферы. Контуры рационального общества и возможность его самоорганизации. Глобальные проблемы человечества. Экология и биоэтика. Концепция устойчивого развития. Роль естествознания в преодолении глобальных кризисов. На пути к целостной культуре. Основы формирования гармонической личности

6. Разработчик

Сыродоев Геннадий Алексеевич, кандидат физико-математических наук, доцент кафедры высшей математики и физики ФГБОУ ВО "ВГСПУ".