ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

1. Цель освоения дисциплины

Формирование систематизированных знаний в области теории вероятностей и математической статистики.

2. Место дисциплины в структуре ОПОП

Дисциплина «Теория вероятностей и математическая статистика» относится к базовой части блока дисциплин.

Для освоения дисциплины «Теория вероятностей и математическая статистика» обучающиеся используют знания, умения, способы деятельности и установки, сформированные в ходе изучения дисциплин «Алгоритмизация и программирование», «Безопасность жизнедеятельности», «Вычислительные системы, сети и телекоммуникации», «Дискретная математика», «Информационные системы и технологии», «Математика», «Теория систем и системный анализ», «Экономическая теория».

Освоение данной дисциплины является необходимой основой для последующего изучения дисциплин «Алгоритмизация и программирование», «Информационная безопасность», «Исследование операций и методы оптимизации», «Проектирование информационных систем», прохождения практик «Ознакомительная практика», «Технологическая (проектнотехнологическая) практика».

3. Планируемые результаты обучения

В результате освоения дисциплины выпускник должен обладать следующими компетенциями:

- способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности (ОПК-1);
- способен решать стандартные задачи профессиональной деятельности на основе информационной и библиографической культуры с применением информационнокоммуникационных технологий и с учетом основных требований информационной безопасности (ОПК-3);
- способен анализировать и разрабатывать организационно-технические и экономические процессы с применением методов системного анализа и математического моделирования (ОПК-6).

В результате изучения дисциплины обучающийся должен:

знать

- основные понятия, формулы и формулировки утверждений комбинаторики и теории случайных событий;
- основные понятия, формулы и формулировки утверждений теории случайных величин;
- основные понятия, формулы и формулировки утверждений математической статистики;

уметь

- решать типовые задачи по комбинаторике и теории случайных событий;
- решать типовые задачи по теории случайных величин;
- решать типовые задачи по математической статистике;

владеть

- методами решения задач комбинаторики и теории вероятностей;
- методами решения задач в области случайных величин;
- методами решения задач в области математической статистики.

4. Общая трудоёмкость дисциплины и её распределение

количество зачётных единиц -4, общая трудоёмкость дисциплины в часах -144 ч. (в т. ч. аудиторных часов -58 ч., СРС -50 ч.), распределение по семестрам -3, форма и место отчётности -3кзамен (3 семестр).

5. Краткое содержание дисциплины

Случайные события.

Элементы комбинаторики. Основные понятия теории вероятностей. Модели вероятностных пространств. Теоремы умножения и сложения вероятностей. Формула полной вероятности. Повторные события.

Случайные величины.

Дискретные случайные величины, закон распределения и числовые характеристики. Непрерывные случайные величины, закон распределения и числовые характеристики. Основные дискретные и непрерывные распределения. Предельные теоремы в теории вероятностей.

Элементы математической статистики.

Основные понятия математической статистики. Выборочный метод. Выборочный закон распределения. Теория оценивания. Проверка статистических гипотез. Простейшие случайные процессы.

6. Разработчик

Харламов Олег Сергеевич, кандидат физико-математических наук, доцент кафедры высшей математики и физики ФГБОУ ВО «ВГСПУ».