МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Волгоградский государственный социально-педагогический университет» Факультет математики, информатики и физики Кафедра информатики и методики преподавания информатики

Проректор по учебной работе

Ю. А. Жадаев
2016 г.

Разработка эффективных алгоритмов

Программа учебной дисциплины

Направление 44.03.01 «Педагогическое образование» Профиль «Математика»

очная форма обучения

Обсуждена на заседании кафедры инфо « <u>Ы</u> »062016 г., протокол №		и методики і	треподава	ания ин	форматики
Заведующий кафедрой (подпись)		сумев в. кафедрой)	« <u>2</u> 8» <u>(</u>) <u>6</u> (дата)	_201 <u>6</u> _г.
Рассмотрена и одобрена на заседании у физики « <u>30</u> »06 201 <u>6</u> г. , прото	⁄чёного с окол № _	овета факуль [.] / <u>/</u> 2	тета мате	матики	, информатики
Председатель учёного совета ТК Сии	пповен	биоднись	« <u>30</u> »_	<i>Об</i> (дата)	_201 <u>6</u> г.
Утверждена на заседании учёного сове «29» _08 _ 2016 г., протокол №		У ВО «ВГСП	IУ»		
Отметки о внесении изменений в пре	ограмму				
Лист изменений №	подпись)	(руководи	гель ОПОП	ī) —	(дата)
Лист изменений №	подпись)	(руковоли	тель ОПОП		(дата)
Лист изменений №					
	подпись)	(руководи	гель ОПОП	I)	(дата)

Разработчики:

Лецко Владимир Александрович, кандидат педагогических наук, доцент кафедры алгебры, геометрии и математического анализа ФГБОУ ВО «ВГСПУ»,

Усольцев Вадим Леонидович, кандидат физико-математических наук, доцент кафедры информатики и методики преподавания информатики ФГБОУ ВО «ВГСПУ».

Программа дисциплины «Разработка эффективных алгоритмов» соответствует требованиям ФГОС ВО по направлению подготовки 44.03.01 «Педагогическое образование» (утверждён приказом Министерства образования и науки Российской Федерации от 4 декабря 2015 г. № 1426) и базовому учебному плану по направлению подготовки 44.03.01 «Педагогическое образование» (профиль «Математика»), утверждённому Учёным советом ФГБОУ ВПО «ВГСПУ» (от 25 января 2016 г., протокол № 8).

1. Цель освоения дисциплины

Сформировать знания, умения и опыт деятельности будущего учителя в области анализа и разработки эффективных алгоритмов.

2. Место дисциплины в структуре ОПОП

Дисциплина «Разработка эффективных алгоритмов» относится к вариативной части блока дисциплин и является дисциплиной по выбору.

Для освоения дисциплины «Разработка эффективных алгоритмов» обучающиеся используют знания, умения, способы деятельности и установки, сформированные в ходе изучения дисциплин «Естественнонаучная картина мира», «Информационные технологии в образовании», «Основы математической обработки информации», «Алгебра», «Вводный курс математики», «Геометрия», «Математический анализ», «Физика», прохождения практики «Практика по получению первичных профессиональных умений и навыков».

Освоение данной дисциплины является необходимой основой для последующего изучения дисциплин «Геометрия», «Информационные технологии в математике», «Компьютерная алгебра», «Руководство исследовательской работой обучающихся в области математики», «Теория вероятностей и математическая статистика», «Численные методы», прохождения практик «Практика по получению первичных умений и навыков научно-исследовательской деятельности», «Преддипломная практика».

3. Планируемые результаты обучения

В результате освоения дисциплины выпускник должен обладать следующими компетенциями:

– способностью использовать естественнонаучные и математические знания для ориентирования в современном информационном пространстве (ОК-3).

В результате изучения дисциплины обучающийся должен:

знать

- основные принципы анализа алгоритмов и основные структуры данных;
- основные методы сортировки;
- методы поиска на основе деревьев;
- основные алгоритмы вычислительной геометрии;
- специфику представления геометрических данных и алгоритмов вычислительной геометрии;

уметь

- определять временную и емкостную сложность известных алгоритмов;
- реализовывать основные методы сортировки, включая алгоритм быстрой сортировки, на языках высокого уровня;
 - простейшими методами быстрого поиска в отсортированных массивах данных;
- реализовывать базовые алгоритмы вычислительной геометрии: нахождение выпуклой оболочки; нахождение ближайшей пары точек; нахождение диаметра множества точек; локализация точки внутри многоугольника;

владеть

- понятиями временной и емкостной сложности алгоритма;
- представлением об основных принципах хэширования.

4. Объём дисциплины и виды учебной работы

Ρινη γινοδικού ποδοπικ	Всего	Семестры
Вид учебной работы	часов	3
Аудиторные занятия (всего)	72	72
В том числе:		
Лекции (Л)	36	36
Практические занятия (ПЗ)	_	_
Лабораторные работы (ЛР)	36	36
Самостоятельная работа	36	36
Контроль	_	_
Вид промежуточной аттестации		34
Общая трудоемкость часы	108	108
зачётные единицы	3	3

5. Содержание дисциплины

5.1. Содержание разделов дисциплины

No	Наименование раздела	Содержание раздела дисциплины
Π/Π	дисциплины	
1	Основные принципы	Предмет анализа алгоритмов. Сложность алгоритма по
	анализа алгоритмов.	времени и по памяти. Наихудшие и наилучшие случаи.
	Структуры данных	Скорость роста алгоритма. Классификация скоростей
		роста. Рекурсия. Алгоритмы типа «разделяй и
		властвуй». Нижние границы сложности задач. Модели
		вычислений. Основные структуры данных.
2	Алгоритмы сортировки	Алгоритмы сортировки. Анализ прямых методов
		сортировки массивов. Методы быстрой сортировки
		массивов и их анализ.
3	Алгоритмы поиска	Задача поиска. Выборка. Методы поиска в основной
		памяти на основе деревьев. Использование
		хэширования для поиска в основной памяти. Поиск во
		внешней памяти.
4	Введение в	Геометрические алгоритмы. Основные задачи и
	вычислительную	понятия вычислительной геометрии. Задачи
	геометрию	нахождения ближайших точек. Быстрый алгоритм
		поиска ближайшей пары точек в заданном множестве.
		Задача локализации точки. Приложения
		геометрических алгоритмов.

5.2. Количество часов и виды учебных занятий по разделам дисциплины

No	Наименование раздела	Лекц.	Практ.	Лаб.	CPC	Всего
Π/Π	дисциплины		зан.	зан.		
1	Основные принципы анализа	12	_	8	9	29
	алгоритмов. Структуры данных					
2	Алгоритмы сортировки	8	_	10	9	27

3	Алгоритмы поиска	8	ı	8	9	25
4	Введение в вычислительную	8	_	10	9	27
	геометрию					

6. Перечень основной и дополнительной учебной литературы

6.1. Основная литература

- 1. Костюкова Н.И. Комбинаторные алгоритмы для программистов [Электронный ресурс]/ Костюкова Н.И.— Электрон. текстовые данные.— М.: Интернет-Университет Информационных Технологий (ИНТУИТ), 2016.— 216 с.— Режим доступа: http://www.iprbookshop.ru/52192.— ЭБС «IPRbooks».
- 2. Окулов С.М. Программирование в алгоритмах [Электронный ресурс]/ Окулов С.М.— Электрон. текстовые данные.— М.: БИНОМ. Лаборатория знаний, 2014.— 384 с.— Режим доступа: http://www.iprbookshop.ru/37090.— ЭБС «IPRbooks».
- 3. Никлаус Вирт Алгоритмы и структуры данных. Новая версия для Оберона [Электронный ресурс]/ Никлаус Вирт— Электрон. текстовые данные.— М.: ДМК Пресс, 2010.— 272 с.— Режим доступа: http://www.iprbookshop.ru/7965.— ЭБС «IPRbooks».

6.2. Дополнительная литература

- 1. Шень А.Х. Практикум по методам построения алгоритмов [Электронный ресурс]/ Шень А.Х.— Электрон. текстовые данные.— М.: Интернет-Университет Информационных Технологий (ИНТУИТ), 2016.— 335 с.— Режим доступа: http://www.iprbookshop.ru/52164.— ЭБС «IPRbooks».
- 2. Королев Л.Н., Миков А.И. Информатика. Введение в компьютерные науки. М.: Высшая школа, 2003. 15 экз.

7. Ресурсы Интернета

Перечень ресурсов Интернета, необходимых для освоения дисциплины:

1. Электронная библиотечная система IPRbooks (http://www.iprbookshop.ru).

8. Информационные технологии и программное обеспечение

Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем (при необходимости):

1. Система программирования Lazarus или Turbo Delphi.

9. Материально-техническая база

Для проведения учебных занятий по дисциплине «Разработка эффективных алгоритмов» необходимо следующее материально-техническое обеспечение:

- 1. Учебная аудитория для проведения лекционных занятий.
- 2. Компьютерный класс для проведения лабораторных работ.
- 3. Аудитория для проведения самостоятельной работы студентов с доступом к сети Интернет.

10. Методические указания для обучающихся по освоению дисциплины

Дисциплина «Разработка эффективных алгоритмов» относится к вариативной части блока дисциплин и является дисциплиной по выбору. Программой дисциплины предусмотрено чтение лекций и проведение лабораторных работ. Промежуточная аттестация проводится в форме зачета.

Лекционные занятия направлены на формирование глубоких, систематизированных знаний по разделам дисциплины. В ходе лекций преподаватель раскрывает основные, наиболее сложные понятия дисциплины, а также связанные с ними теоретические и практические проблемы, даёт рекомендации по практическому освоению изучаемого материала. В целях качественного освоения лекционного материала обучающимся рекомендуется составлять конспекты лекций, использовать эти конспекты при подготовке к практическим занятиям, промежуточной и итоговой аттестации.

Лабораторная работа представляет собой особый вид индивидуальных практических занятий обучающихся, в ходе которых используются теоретические знания на практике, применяются специальные технические средства, различные инструменты и оборудование. Такие работы призваны углубить профессиональные знания обучающихся, сформировать умения и навыки практической работы в соответствующей отрасли наук. В процессе лабораторной работы обучающийся изучает практическую реализацию тех или иных процессов, сопоставляет полученные результаты с положениями теории, осуществляет интерпретацию результатов работы, оценивает возможность применения полученных знаний на практике.

При подготовке к лабораторным работам следует внимательно ознакомиться с теоретическим материалом по изучаемым темам. Необходимым условием допуска к лабораторным работам, предполагающим использованием специального оборудования и материалов, является освоение правил безопасного поведения при проведении соответствующих работ. В ходе самой работы необходимо строго придерживаться плана работы, предложенного преподавателем, фиксировать промежуточные результаты работы для отчета по лабораторной работе.

Контроль за качеством обучения и ходом освоения дисциплины осуществляется на основе рейтинговой системы текущего контроля успеваемости и промежуточной аттестации студентов. Рейтинговая система предполагает 100-балльную оценку успеваемости студента по учебной дисциплине в течение семестра, 60 из которых отводится на текущий контроль, а 40 — на промежуточную аттестацию по дисциплине. Критериальная база рейтинговой оценки, типовые контрольные задания, а также методические материалы по их применению описаны в фонде оценочных средств по дисциплине, являющемся приложением к данной программе.

11. Учебно-методическое обеспечение самостоятельной работы

Самостоятельная работа обучающихся является неотъемлемой частью процесса обучения в вузе. Правильная организация самостоятельной работы позволяет обучающимся развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, способствует формированию навыков совершенствования профессионального мастерства.

Самостоятельная работа обучающихся во внеаудиторное время включает в себя подготовку к аудиторным занятиям, а также изучение отдельных тем, расширяющих и углубляющих представления обучающихся по разделам изучаемой дисциплины. Такая работа может предполагать проработку теоретического материала, работу с научной литературой, выполнение практических заданий, подготовку ко всем видам контрольных испытаний, выполнение творческих работ.

Учебно-методическое обеспечение для самостоятельной работы обучающихся по дисциплине представлено в рабочей программе и включает в себя:

- рекомендуемую основную и дополнительную литературу;

- информационно-справочные и образовательные ресурсы Интернета;
- оценочные средства для проведения текущего контроля и промежуточной аттестации по дисциплине.

Конкретные рекомендации по планированию и проведению самостоятельной работы по дисциплине «Разработка эффективных алгоритмов» представлены в методических указаниях для обучающихся, а также в методических материалах фондов оценочных средств.

12. Фонд оценочных средств

Фонд оценочных средств, включающий перечень компетенций с указанием этапов их формирования, описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания, типовые контрольные задания и методические материалы является приложением к программе учебной дисциплины.