ТЕПЛОТЕХНИКА

1. Цель освоения дисциплины

Сформировать систему компетенций будущего учителя технологии в процессе изучения основ теории теплотехники для решения задач профессиональной деятельности.

2. Место дисциплины в структуре ОПОП

Дисциплина «Теплотехника» относится к вариативной части блока дисциплин и является дисциплиной по выбору.

Для освоения дисциплины «Теплотехника» обучающиеся используют знания, умения, способы деятельности и установки, сформированные в ходе изучения дисциплин «Методика обучения технологии и предпринимательству», «Автотранспортные средства», «Вспомогательные технологические работы в сельском хозяйстве», «Гидравлика», «Графика», «Детали машин», «История науки и техники», «История технологической культуры мировых цивилизаций», «Маркетинг в малом бизнесе», «Маркетинг образовательных услуг», «Машиностроительное производство», «Машиностроительное черчение», «Механизация и автоматизация агропромышленного производства», «Начертательная геометрия», «Обустройство и дизайн дома», «Организация современного производства», «Основы гидродинамики», «Основы исследований в технологическом образовании», «Основы конструирования», «Основы материаловедения», «Основы предпринимательской деятельности», «Основы творческо-конструкторской деятельности», «Основы теории технологической подготовки», «Основы термодинамики», «Перспективные материалы и технологии», «Практикум по обработке древесины», «Практикум по обработке металлов», «Предпринимательская деятельность в учреждениях образования», «Процессы и аппараты пищевых производств», «Ремонт и эксплуатация дома», «Сельскохозяйственные машины», «Стандартизация, метрология и технические измерения», «Теоретическая механика», «Теория машин и механизмов, сопротивление материалов», «Техническая эстетика и дизайн», «Техническое творчество», «Технологии современного производства», «Технология конструкционных материалов», «Технология механизированных сельскохозяйственных работ», «Технология обработки материалов», «Тракторы и автомобили», «Эксплуатация и диагностика компьютера», «Эксплуатация и ремонт машинотракторного парка», «Элементы автоматики и микроэлектроники», прохождения практик «Практика по получению первичных профессиональных умений и навыков (технологическая)», «Практика по получению первичных умений и навыков научноисследовательской деятельности», «Практика по получению профессиональных умений и опыта профессиональной деятельности».

Освоение данной дисциплины является необходимой основой для последующего изучения дисциплин «Методика обучения технологии и предпринимательству», «Декоративно-оформительское искусство», «Декоративно-прикладное творчество», «Домашняя экономика», «Обустройство и дизайн дома», «Основы термодинамики», «Перспективные методы обучения технологии», «Ремонт и эксплуатация дома», «Современные технологии обучения», прохождения практик «Практика по получению профессиональных умений и опыта профессиональной деятельности», «Преддипломная практика».

3. Планируемые результаты обучения

В результате освоения дисциплины выпускник должен обладать следующими компетенциями:

– способностью использовать знания в области теории, практики и методики преподавания технологии, общетехнических дисциплин и предпринимательства для постановки и решения профессиональных задач (СК-1).

В результате изучения дисциплины обучающийся должен:

знать

- основы теории технической термодинамики;
- основы теории теплообмена;
- основы теории теплоэнергетических установок;

уметь

- использовать в профессиональной деятельности законы термодинамики;
- использовать в профессиональной деятельности законы теплового излучения;
- учитывать в профессиональной деятельности вопросы экологии при использовании теплоты;

владеть

- методами исследования термодинамических процессов;
- общими сведения о тепловом излучении;
- методикой подбора теплоэнергетических установок, соотвествующих предъявляемым требованиям.

4. Общая трудоёмкость дисциплины и её распределение

количество зачётных единиц -2, общая трудоёмкость дисциплины в часах -72 ч. (в т. ч. аудиторных часов -12 ч., СРС -56 ч.), распределение по семестрам -5 курс, зима, 5 курс, лето, форма и место отчётности - зачёт (5 курс, лето).

5. Краткое содержание дисциплины

Техническая термодинамика.

Введение. Основные понятия и определения. Термодинамическая система. Параметры состояния. Уравнение состояния и термодинамический процесс. Первый закон термодинамики. Теплота и работа. Внутренняя энергия. Первый закон термодинамики. Теплоемкость газа. Универсальное уравнение состояния идеального газа. Смесь идеальных газов. Второй закон термодинамики. Основные положения второго закона термодинамики. Энтропия. Цикл и теоремы Карно. Термодинамические процессы. Метод исследования термодинамических процессов. Изопроцессы идеального газа. Политропный процесс. Термодинамика потока. Первый закон термодинамики для потока. Критическое давление и скорость. Сопло Лаваля. Дросселирование. Реальные газы. Водяной пар. Влажный воздух. Свойства реальных газов. Уравнения состояния реального газа. Понятия о водяном паре. Характеристика влажного воздуха. Термодинамические циклы. Циклы паротурбинных установок (ПТУ). Циклы двигателей внутреннего сгорания (ДВС). Циклы газотурбинных установок (ГТУ)

Основы теории теплообмена.

Основные понятия и определения. Теплопроводность. Температурное поле. Уравнение теплопроводности. Стационарная теплопроводность через плоскую стенку. Стационарная теплопроводность через шаровую стенку. Конвективный теплообмен. Факторы, влияющие на конвективный теплообмен. Закон Ньютона-Рихмана. Краткие сведения из теории подобия. Критериальные уравнения конвективного теплообмена. Расчетные формулы конвективного теплообмена. Тепловое излучение. Общие сведения о тепловом излучении. Основные законы теплового излучения. Теплопередача. Теплопередача через плоскую стенку. Теплопередача через цилиндрическую стенку. Типы теплообменных аппаратов. Расчет теплообменных аппаратов

Теплоэнергетические установки.

Энергетическое топливо. Состав топлива. Характеристика топлива. Моторные топлива для поршневых ДВС. Котельные установки. Котельный агрегат и его элементы. Вспомогательное оборудование котельной установки. Тепловой баланс котельного агрегата. Топочные устройства. Топочные устройства. Сжигание топлива. Теплотехнические показатели работы топок. Горение топлива. Физический процесс горения топлива. Определение теоретического и действительного расхода воздуха на горение топлива. Количество продуктов сгорания топлива. Компрессорные установки. Объемный компрессор. Лопаточный компрессор. Холодильные установки. Термодинамические основы получения искусственного холода. Основные холодильные агенты и их свойства. Общее устройство и принцип действия холодильных установок. Холодильный коэффициент, холодопроизводительность, потребляемая мощность. Вопросы экологии при использовании теплоты. Токсичные газы продуктов сгорания. Воздействия токсичных газов. Последствия «парникового» эффекта

6. Разработчик

Колышев Олег Юрьевич, старший преподаватель кафедры технологии, туризма и сервиса ФГБОУ ВО «ВГСПУ».

