МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Волгоградский государственный социально-педагогический университет» Факультет математики, информатики и физики Кафедра информатики и методики преподавания информатики

«УТВЕРЖДАЮ»

Проректор по учебной работе

Ю. А. Жадаев

« 29 » 4 3 4 4 7 201

Основы робототехники

Программа учебной дисциплины

Направление 44.03.01 «Педагогическое образование» Профиль «Информатика»

заочная форма обучения

Обсуждена на заседании кафедры информатики и методики преподавания информатики «28» _ 06 _ 201 6 г., протокол № 11							
Заведующий кафедрой (подпис		А.Н. Сергеев (зав. кафедрой)	« <u>28</u> »	<i>06</i> (дата)	201 <u>6</u> г.		
Рассмотрена и одобрена на заседании учёного совета факультета математики, информатики и физики « 30 » 201 6 _ г. , протокол № 12							
A Para A							
Председатель учёного совета сип	nobengs	У. Стодпись	« <u>30</u> »_	<i>06</i> (дата)	_201 <u>6</u> r.		
Утверждена на заседании учёного совета ФГБОУ ВО «ВГСПУ» « 29 » _ 2016 г. , протокол № _ 1							
Отметки о внесении изменений в программу:							
Лист изменений №							
	(подпис	ь) (руководит	гель ОПОП))	(дата)		
Лист изменений №							
	(подпис	ь) (руководит	ель ОПОП)) ((дата)		
Лист изменений №							
	(подпис	ь) (руководит	ель ОПОП)) ((дата)		

Разработчики:

Пономарева Юлия Сергеевна, кандидат педагогических наук, доцент кафедры информатики и методики преподавания информатики ФГБОУ ВО «ВГСПУ».

Программа дисциплины «Основы робототехники» соответствует требованиям ФГОС ВО по направлению подготовки 44.03.01 «Педагогическое образование» (утверждён приказом Министерства образования и науки Российской Федерации от 4 декабря 2015 г. № 1426) и базовому учебному плану по направлению подготовки 44.03.01 «Педагогическое образование» (профиль «Информатика»), утверждённому Учёным советом ФГБОУ ВПО «ВГСПУ» (от 25 января 2016 г., протокол № 8).

1. Цель освоения дисциплины

Сформировать систему компетенций будущего учителя информатики в области использования конструкторов программируемых роботов для решения педагогических задач.

2. Место дисциплины в структуре ОПОП

Дисциплина «Основы робототехники» относится к вариативной части блока дисциплин и является дисциплиной по выбору.

Для освоения дисциплины «Основы робототехники» обучающиеся используют знания, умения, способы деятельности и установки, сформированные в ходе изучения дисциплин «Архитектура компьютера», «Высокоуровневые методы программирования», «Информационные системы», «Информационные технологии», «Компьютерная графика», «Методы и средства защиты информации», «Операционная система Linux», «Офисные технологии», «Построение Windows-сетей», «Практикум по решению задач на ЭВМ», «Программирование», «Программные средства информационных систем», «Проектирование информационных систем», «Разработка Flash-приложений», «Разработка интернетприложений», «Разработка эффективных алгоритмов», «Теоретические основы информатики», «Теория чисел и числовые системы».

Освоение данной дисциплины является необходимой основой для последующего изучения дисциплин «Компьютерное моделирование», «Перспективные направления искусственного интеллекта», «Перспективные направления компьютерного моделирования», прохождения практики «Преддипломная практика».

3. Планируемые результаты обучения

В результате освоения дисциплины выпускник должен обладать следующими компетенциями:

– готовностью применять предметные и метапредметные знания фундаментальной и прикладной информатики для решения теоретических и практических задач, реализации аналитических и технологических решений в области представления и обработки информации, информатизации образования (СК-1).

В результате изучения дисциплины обучающийся должен:

знать

- основные представления о робототехнических системах, их возможностях и перспективах развития;
- назначение, принципы использования, состав и дидактические возможности конструкторов программируемых роботов и сопровождающего программного обеспечения;
- основные алгоритмы реального времени для учебных роботов (прохождение трассы, движение по лабиринту и т.д.);
 - особенности изучения основ робототехники младшими школьниками;

уметь

- использовать среды программирования виртуальных роботов для разработки и отладки алгоритмов;
- создавать конструкцию и разрабатывать программу для робота, выполняющего поставленную задачу;

– определять конструкторские и программные особенности робота, решающего поставленную задачу, и выбирать из них оптимальные;

владеть

- опытом проектирования содержания элективных курсов и внеурочных форм работы по робототехнике;
 - опытом конструирования и программирования учебных роботов;
- опытом постановки новых задач для конструирования и программирования учебных роботов;
 - опытом составления задач на конструирование программируемых роботов.

4. Объём дисциплины и виды учебной работы

Dun yungguan nagamu	Всего	Семестры	
Вид учебной работы	часов	53	
Аудиторные занятия (всего)	16	16	
В том числе:			
Лекции (Л)	6	6	
Практические занятия (ПЗ)	_	_	
Лабораторные работы (ЛР)	10	10	
Самостоятельная работа	88	88	
Контроль	4	4	
Вид промежуточной аттестации		ЗЧО	
Общая трудоемкость часы	108	108	
зачётные единицы	3	3	

5. Содержание дисциплины

5.1. Содержание разделов дисциплины

No	Наименование раздела	Содержание раздела дисциплины
Π/Π	дисциплины	
1	Основы робототехники в	Понятие робота. Типы роботов. Робототехника как
	школе	наука. Становление образовательной робототехники.
		Цели и уровни изучения робототехники в школе.
		Программное обеспечение занятий по робототехнике в
		школе.
2	Конструкторы	Обзор конструкторов программируемых роботов.
	программируемых роботов	Конструкторы программируемых роботов LEGO
		Mindstorms. Стандартные детали LEGO Mindstorms,
		сенсоры, двигатели, программируемый блок. Среды
		программирования учебных роботов Lego Mindstorms
		NXT-G и Lego EV3. Типичные задачи для построения
		программируемых роботов. Простейшие алгоритмы
		для LEGO Mindstorms.
3	Соревнования по	Типы соревнований по робототехнике. Правила
	робототехнике	проведения всемирной олимпиады роботов.
		Алгоритмы решения задач с соревнования по
		робототехнике.
4	Робототехника для	Образовательный потенциал робототехники для
	младших школьников	младшего школьного возраста. Конструктор Lego
		WeDo. Программно-методическое сопровождение

5.2. Количество часов и виды учебных занятий по разделам дисциплины

No	Наименование раздела	Лекц.	Практ.	Лаб.	CPC	Всего
п/п	дисциплины		зан.	зан.		
1	Основы робототехники в школе	2	-	1	19	22
2	Конструкторы	1	-	3	23	27
	программируемых роботов					
3	Соревнования по	2	_	3	23	28
	робототехнике					
4	Робототехника для младших	1	_	3	23	27
	школьников					

6. Перечень основной и дополнительной учебной литературы

6.1. Основная литература

- 1. Никитина Т.В. Образовательная робототехника как направление инженернотехнического творчества школьников [Электронный ресурс]: учебное пособие/ Никитина Т.В.— Электрон. текстовые данные.— Челябинск: Челябинский государственный педагогический университет, 2014.— 171 с.— Режим доступа: http://www.iprbookshop.ru/31920.— ЭБС «IPRbooks», по паролю.
- 2. Пономарева Ю.С. Практикум по основам робототехники. Задачи для Lego mindstorms nxt и ev3 [Электронный ресурс]: учебно-методическое пособие/ Пономарева Ю.С., Шемелова Т.В.— Электрон. текстовые данные.— Волгоград: Волгоградский государственный социально-педагогический университет, 2016.— 36 с.— Режим доступа: http://www.iprbookshop.ru/54361.— ЭБС «IPRbooks».

6.2. Дополнительная литература

- 1. Образовательная робототехника [Электронный ресурс]: учебно-методический комплекс дисциплины/ Электрон. текстовые данные.— Челябинск: Челябинский государственный педагогический университет, 2014.— 32 с.— Режим доступа: http://www.iprbookshop.ru/31915.— ЭБС «IPRbooks», по паролю.
- 2. Родин Б.П. Механика робота [Электронный ресурс]: учебное пособие/ Родин Б.П.— Электрон. текстовые данные.— Саратов: Вузовское образование, 2013.— 56 с.— Режим доступа: http://www.iprbookshop.ru/18393.

7. Ресурсы Интернета

Перечень ресурсов Интернета, необходимых для освоения дисциплины:

- 1. Каталог электронных материалов учебных занятий для интерактивной доски (Сайт "Уроки") Волгоградского государственного социально-педагогического университета. URL: http://mabi.vspu.ru).
- 2. Портал электронного обучения Волгоградского государственного социальнопедагогического университета. URL: http://lms.vspu.ru.
 - 3. Электронная библиотечная система IPRbooks. URL: http://www.iprbookshop.ru/.

8. Информационные технологии и программное обеспечение

Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем (при необходимости):

- 1. Комплект офисного программного обеспечения.
- 2. Конструктор виртуальных роботов Lego Digital Designer.
- 3. Среда программирования виртуальных роботов Qreal: robots.
- 4. Среда программирования учебных роботов Lego EV3.
- 5. Среда программирования учебных роботов Lego Mindstorms NXT-G.

9. Материально-техническая база

Для проведения учебных занятий по дисциплине «Основы робототехники» необходимо следующее материально-техническое обеспечение:

- 1. Учебная аудитория с мультимедийной поддержкой для проведения лекционных занятий.
 - 2. Комплекты программируемых роботов Lego Mindstorms, Lego EV3.
 - 3. Лаборатория робототехники.
- 4. Аудитория для проведения самостоятельной работы студентов с доступом к сети Интернет.

10. Методические указания для обучающихся по освоению дисциплины

Дисциплина «Основы робототехники» относится к вариативной части блока дисциплин и является дисциплиной по выбору. Программой дисциплины предусмотрено чтение лекций и проведение лабораторных работ. Промежуточная аттестация проводится в форме аттестации с оценкой.

Лекционные занятия направлены на формирование глубоких, систематизированных знаний по разделам дисциплины. В ходе лекций преподаватель раскрывает основные, наиболее сложные понятия дисциплины, а также связанные с ними теоретические и практические проблемы, даёт рекомендации по практическому освоению изучаемого материала. В целях качественного освоения лекционного материала обучающимся рекомендуется составлять конспекты лекций, использовать эти конспекты при подготовке к практическим занятиям, промежуточной и итоговой аттестации.

Лабораторная работа представляет собой особый вид индивидуальных практических занятий обучающихся, в ходе которых используются теоретические знания на практике, применяются специальные технические средства, различные инструменты и оборудование. Такие работы призваны углубить профессиональные знания обучающихся, сформировать умения и навыки практической работы в соответствующей отрасли наук. В процессе лабораторной работы обучающийся изучает практическую реализацию тех или иных процессов, сопоставляет полученные результаты с положениями теории, осуществляет интерпретацию результатов работы, оценивает возможность применения полученных знаний на практике.

При подготовке к лабораторным работам следует внимательно ознакомиться с теоретическим материалом по изучаемым темам. Необходимым условием допуска к лабораторным работам, предполагающим использованием специального оборудования и материалов, является освоение правил безопасного поведения при проведении соответствующих работ. В ходе самой работы необходимо строго придерживаться плана работы, предложенного преподавателем, фиксировать промежуточные результаты работы для отчета по лабораторной работе.

Контроль за качеством обучения и ходом освоения дисциплины осуществляется на основе рейтинговой системы текущего контроля успеваемости и промежуточной аттестации студентов. Рейтинговая система предполагает 100-балльную оценку успеваемости студента

по учебной дисциплине в течение семестра, 60 из которых отводится на текущий контроль, а 40 — на промежуточную аттестацию по дисциплине. Критериальная база рейтинговой оценки, типовые контрольные задания, а также методические материалы по их применению описаны в фонде оценочных средств по дисциплине, являющемся приложением к данной программе.

11. Учебно-методическое обеспечение самостоятельной работы

Самостоятельная работа обучающихся является неотъемлемой частью процесса обучения в вузе. Правильная организация самостоятельной работы позволяет обучающимся развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, способствует формированию навыков совершенствования профессионального мастерства.

Самостоятельная работа обучающихся во внеаудиторное время включает в себя подготовку к аудиторным занятиям, а также изучение отдельных тем, расширяющих и углубляющих представления обучающихся по разделам изучаемой дисциплины. Такая работа может предполагать проработку теоретического материала, работу с научной литературой, выполнение практических заданий, подготовку ко всем видам контрольных испытаний, выполнение творческих работ.

Учебно-методическое обеспечение для самостоятельной работы обучающихся по дисциплине представлено в рабочей программе и включает в себя:

- рекомендуемую основную и дополнительную литературу;
- информационно-справочные и образовательные ресурсы Интернета;
- оценочные средства для проведения текущего контроля и промежуточной аттестации по дисциплине.

Конкретные рекомендации по планированию и проведению самостоятельной работы по дисциплине «Основы робототехники» представлены в методических указаниях для обучающихся, а также в методических материалах фондов оценочных средств.

12. Фонд оценочных средств

Фонд оценочных средств, включающий перечень компетенций с указанием этапов их формирования, описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания, типовые контрольные задания и методические материалы является приложением к программе учебной дисциплины.