МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Волгоградский государственный социально-педагогический университет» Факультет математики, информатики и физики Кафедра информатики и методики преподавания информатики

Проректор по учебной работе
НО. А. Жадаев
2016 г.

Компьютерное моделирование

Программа учебной дисциплины

Направление 44.03.01 «Педагогическое образование» Профиль «Информатика»

очная форма обучения

Обсуждена на заседании кафедры и «28» _ 06 _ 2016 г., протокол	информатики и № <u>//</u>	и методики п	реподавания	информатики
Заведующий кафедрой подпись		<i>Сергеев</i> кафедрой)	« <u>28</u> » <u>Об</u> (да	<u>га)</u> 201 <u>6</u> г.
Рассмотрена и одобрена на заседан физики « <u>30</u> » <u>06</u> 201 <u>6</u> г., п	ии учёного сог ротокол № <u>//</u>	вета факульт	ета математ	ики, информатики и
Председатель учёного совета Сиц	пиовскре	(ноднись)	« <u>30</u> »(да	<u>Об</u> 201 <u>6</u> г.
Утверждена на заседании учёного с «29»082016_г., протокол	совета ФГБОУ м <u>/</u>	' ВО «ВГСП	У»	
Отметки о внесении изменений в	программу:			
Лист изменений №	(подпись)	(руководит	тель ОПОП)	(дата)
Лист изменений №	(подпись)	(руководи	гель ОПОП)	(дата)
Лист изменений №	(подпись)	(руководи	тель ОПОП)	(дата)

Разработчики:

Маркович Ольга Сергеевна, старший преподаватель кафедры информатики и методики преподавания информатики ФГБОУ ВО «ВГСПУ»,

Усольцев Вадим Леонидович, кандидат физико-математических наук, доцент кафедры информатики и методики преподавания информатики ФГБОУ ВО «ВГСПУ».

Программа дисциплины «Компьютерное моделирование» соответствует требованиям ФГОС ВО по направлению подготовки 44.03.01 «Педагогическое образование» (утверждён приказом Министерства образования и науки Российской Федерации от 4 декабря 2015 г. № 1426) и базовому учебному плану по направлению подготовки 44.03.01 «Педагогическое образование» (профиль «Информатика»), утверждённому Учёным советом ФГБОУ ВПО «ВГСПУ» (от 25 января 2016 г., протокол № 8).

1. Цель освоения дисциплины

Сформировать у студентов систему знаний и умений в области компьютерного математического и имитационного моделирования для решения профессиональных задач.

2. Место дисциплины в структуре ОПОП

Дисциплина «Компьютерное моделирование» относится к вариативной части блока дисциплин.

Для освоения дисциплины «Компьютерное моделирование» обучающиеся используют знания, умения, способы деятельности и установки, сформированные в ходе изучения дисциплин «Архитектура компьютера», «Высокоуровневые методы программирования», «Информационные системы», «Информационные технологии», «Компьютерная графика», «Методы и средства защиты информации», «Операционная система Linux», «Основы искусственного интеллекта», «Основы робототехники», «Офисные технологии», «Построение Windows-сетей», «Практикум по решению задач на ЭВМ», «Программирование», «Программные средства информационных систем», «Проектирование информационных систем», «Разработка Flash-приложений», «Разработка интернетприложений», «Разработка эффективных алгоритмов», «Современные языки программирования», «Специализированные математические пакеты», «Теоретические основы информатики», «Теория чисел и числовые системы», «Эксплуатация компьютерных систем».

3. Планируемые результаты обучения

В результате освоения дисциплины выпускник должен обладать следующими компетенциями:

– готовностью применять предметные и метапредметные знания фундаментальной и прикладной информатики для решения теоретических и практических задач, реализации аналитических и технологических решений в области представления и обработки информации, информатизации образования (СК-1).

В результате изучения дисциплины обучающийся должен:

знать

- основные понятия моделирования;
- различные классификации моделей;
- примеры моделей в различных областях науки и практики;
- основы системного подхода в моделировании;
- основные подходы к моделированию случайных процессов;
- основные понятия и принципы имитационного моделирования;

уметь

- разрабатывать и анализировать модели в различных областях деятельности;
- использовать основные методы имитационного моделирования;
- использовать современные программные средства компьютерного моделирования;

владеть

- навыками разработки и анализа моделей;
- навыком проведения вычислительного эксперимента;
- представлениями о моделировании динамических систем.

4. Объём дисциплины и виды учебной работы

Ρινη γινοδικού ποδοπικ	Всего	Семестры
Вид учебной работы	часов	8
Аудиторные занятия (всего)	50	50
В том числе:		
Лекции (Л)	10	10
Практические занятия (ПЗ)	20	20
Лабораторные работы (ЛР)	20	20
Самостоятельная работа	40	40
Контроль	36	36
Вид промежуточной аттестации		ЭК
Общая трудоемкость часы	126	126
зачётные единицы	3.5	3.5

5. Содержание дисциплины

5.1. Содержание разделов дисциплины

$N_{\underline{0}}$	Наименование раздела	Содержание раздела дисциплины		
Π/Π	дисциплины			
1	Моделирование и его виды	Модели. Моделирование как универсальный метод		
		познания. Натурные и абстрактные модели. Виды		
		абстрактных моделей. Математическое		
		моделирование. Компьютерное моделирование.		
		Имитационное моделирование. Цели и основные		
		этапы компьютерного математического		
		моделирования. Аналитическое и численное		
		моделирование. Вычислительный эксперимент.		
		Анализ и интерпретация моделей. Различные подходы		
		к классификации математических моделей.		
2	Детерминированные	Примеры детерминированных математических		
	модели. Системный подход	моделей в различных областях науки и практики.		
	в моделировании	Системный подход в моделировании. Основные		
		понятия и принципы теории систем и системного		
		анализа. Различные классификации систем.		
		Моделирование систем.		
3	Моделирование	Стохастические системы. Псевдослучайные числа.		
	стохастических систем	Общие алгоритмы моделирования дискретных и		
		непрерывных случайных величин. Примеры		
		стохастических моделей.		
4	Имитационное	Имитационное моделирование. Примеры		
	моделирование	имитационных моделей. Основные подходы,		
		используемые в имитационном моделировании. Обзор		
		основных программных пакетов имитационного		
		моделирования. Этапы имитационного		
		моделирования. Модельное время. Принципы его		
		организации. Моделирование систем массового		

		обслуживания.
5	Моделирование	Моделирование динамических систем (ДС). Фазовая
	динамических систем. Хаос	характеризация ДС. Качественное исследование
	и самоорганизация	поведения ДС. Инструментальные средства для
		моделирования ДС. Детерминированный хаос и
		самоорганизация в ДС.

5.2. Количество часов и виды учебных занятий по разделам дисциплины

No	Наименование раздела	Лекц.	Практ.	Лаб.	CPC	Всего
Π/Π	дисциплины		зан.	зан.		
1	Моделирование и его виды	2	6	4	10	22
2	Детерминированные модели.	2	4	8	6	20
	Системный подход в					
	моделировании					
3	Моделирование стохастических	2	2	2	6	12
	систем					
4	Имитационное моделирование	2	4	2	8	16
5	Моделирование динамических	2	4	4	10	20
	систем. Хаос и					
	самоорганизация					

6. Перечень основной и дополнительной учебной литературы

6.1. Основная литература

- 1. Советов, Б. Я. Моделирование систем [Текст]: учебник для студентов вузов, обучающихся по направлениям "Информатика и вычислит. техника" и "Информ. системы" / Б. Я. Советов, С. А. Яковлев. 5-е изд., стер. М.: Высшая школа, 2007. 342, [2] с.: рис. Библиогр.: с. 340-341. ISBN 978-5-06-003860-6; 60 экз.: 354-20..
- 2. Салмина Н.Ю. Имитационное моделирование [Электронный ресурс]: учебное пособие/ Салмина Н.Ю.— Электрон. текстовые данные.— Томск: Томский государственный университет систем управления и радиоэлектроники, Эль Контент, 2012.— 90 с.— Режим доступа: http://www.iprbookshop.ru/13930.— ЭБС «IPRbooks».
- 3. Могилев, А. В. Информатика [Текст]: учеб. пособие для студентов вузов, обучающихся по пед. специальностям / А. В. Могилев, Н. И. Пак, Е. К. Хеннер; под ред. Е. К. Хеннера. 5-е изд., стер. М.: Изд. центр "Академия", 2007. 840, [1] с.: ил. (Высшее профессиональное образование. Педагогические специальности). Библиогр. в конце глав. ISBN 978-5-7695-4547-4; 30 экз.: 399-30.

6.2. Дополнительная литература

- 1. Тарасевич Ю. Ю. Математическое и компьютерное моделирование. Вводный курс: учеб. пособие для студентов вузов, обучающихся по специальности 030100 Информатика / Ю. Ю. Тарасевич. 4-е изд., испр. М.: Едиториал УРСС, 2004. 148,[1] с. Библиогр.: с. 148-149 (20 назв.). ISBN 5-354-00913-8; 20 экз.: 181-31...
- 2. Балдин К.В. Информационные системы в экономике [Электронный ресурс]: учебник/ Балдин К.В., Уткин В.Б.— Электрон. текстовые данные.— М.: Дашков и К, 2015.— 395 с.— Режим доступа: http://www.iprbookshop.ru/52298.— ЭБС «IPRbooks».
- 3. Черняева С.Н. Имитационное моделирование систем [Электронный ресурс]: учебное пособие/ Черняева С.Н., Денисенко В.В.— Электрон. текстовые данные.— Воронеж: Воронежский государственный университет инженерных технологий, 2016.— 96 с.— Режим

доступа: http://www.iprbookshop.ru/50630.— ЭБС «IPRbooks», по паролю.

- 4. Павловский, Ю. Н. Имитационное моделирование [Текст]: учеб. пособие для студентов вузов, обучающихся по специальностям направления подгот. "Прикладная математика и информатика" / Ю. Н. Павловский, Н. В. Белотелов, Ю. И. Бродский; ред. сов. сер. Ю. И. Журавлев, В. А. Садовничий, О. М. Белоцерковский [и др.]. М.: Изд. центр "Академия", 2008. 234, [2] с.: ил. (Университетский учебник) (Прикладная математика и информатика). Библиогр.: с. 231-233. ISBN 978-5-7695-3967-1; 20 экз.: 342-10..
- 5. Королев А. Л. Компьютерное моделирование [Текст] : [учеб. пособие для пед. вузов по специальности "Информатика"] / А. Л. Королев. М. : Бином. Лаборатория знаний, 2010. 230 с. (Педагогическое образование). Библиогр.: с. 223-228 (114 назв.). ISBN 978-5-94774-487-3; 5 экз. : 181-80.

7. Ресурсы Интернета

Перечень ресурсов Интернета, необходимых для освоения дисциплины:

- 2. Сайт о системе имитационного моделирования AnyLogic. URL: http://www.anylogic.ru/.

8. Информационные технологии и программное обеспечение

Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем (при необходимости):

- 1. Система программирования Turbo Delphi.
- 2. Универсальная система моделирования MVS (Model Vision Studium).
- 3. Система компьютерной алгебры Махіта.
- 4. Система имитационного моделирования GPSS World.
- 5. Офисный пакет Open Office.

9. Материально-техническая база

Для проведения учебных занятий по дисциплине «Компьютерное моделирование» необходимо следующее материально-техническое обеспечение:

- 1. Учебный компьютерный класс для проведения лабораторных занятий.
- 2. Учебная аудитория для проведения практических занятий.
- 3. Учебная аудитория для проведения лекционных занятий.

10. Методические указания для обучающихся по освоению дисциплины

Дисциплина «Компьютерное моделирование» относится к вариативной части блока дисциплин. Программой дисциплины предусмотрено чтение лекций, проведение практических занятий и лабораторных работ. Промежуточная аттестация проводится в форме экзамена.

Лекционные занятия направлены на формирование глубоких, систематизированных знаний по разделам дисциплины. В ходе лекций преподаватель раскрывает основные, наиболее сложные понятия дисциплины, а также связанные с ними теоретические и практические проблемы, даёт рекомендации по практическому освоению изучаемого материала. В целях качественного освоения лекционного материала обучающимся рекомендуется составлять конспекты лекций, использовать эти конспекты при подготовке к практическим занятиям, промежуточной и итоговой аттестации.

Практические занятия являются формой организации педагогического процесса, направленной на углубление научно-теоретических знаний и овладение методами работы, в процессе которых вырабатываются умения и навыки выполнения учебных действий в сфере изучаемой науки. Практические занятия предполагают детальное изучение обучающимися отдельных теоретических положений учебной дисциплины. В ходе практических занятий формируются умения и навыки практического применения теоретических знаний в конкретных ситуациях путем выполнения поставленных задач, развивается научное мышление и речь, осуществляется контроль учебных достижений обучающихся.

При подготовке к практическим занятиям необходимо ознакомиться с теоретическим материалом дисциплины по изучаемым темам — разобрать конспекты лекций, изучить литературу, рекомендованную преподавателем. Во время самого занятия рекомендуется активно участвовать в выполнении поставленных заданий, задавать вопросы, принимать участие в дискуссиях, аккуратно и своевременно выполнять контрольные задания.

Лабораторная работа представляет собой особый вид индивидуальных практических занятий обучающихся, в ходе которых используются теоретические знания на практике, применяются специальные технические средства, различные инструменты и оборудование. Такие работы призваны углубить профессиональные знания обучающихся, сформировать умения и навыки практической работы в соответствующей отрасли наук. В процессе лабораторной работы обучающийся изучает практическую реализацию тех или иных процессов, сопоставляет полученные результаты с положениями теории, осуществляет интерпретацию результатов работы, оценивает возможность применения полученных знаний на практике.

При подготовке к лабораторным работам следует внимательно ознакомиться с теоретическим материалом по изучаемым темам. Необходимым условием допуска к лабораторным работам, предполагающим использованием специального оборудования и материалов, является освоение правил безопасного поведения при проведении соответствующих работ. В ходе самой работы необходимо строго придерживаться плана работы, предложенного преподавателем, фиксировать промежуточные результаты работы для отчета по лабораторной работе.

Контроль за качеством обучения и ходом освоения дисциплины осуществляется на основе рейтинговой системы текущего контроля успеваемости и промежуточной аттестации студентов. Рейтинговая система предполагает 100-балльную оценку успеваемости студента по учебной дисциплине в течение семестра, 60 из которых отводится на текущий контроль, а 40 — на промежуточную аттестацию по дисциплине. Критериальная база рейтинговой оценки, типовые контрольные задания, а также методические материалы по их применению описаны в фонде оценочных средств по дисциплине, являющемся приложением к данной программе.

11. Учебно-методическое обеспечение самостоятельной работы

Самостоятельная работа обучающихся является неотъемлемой частью процесса обучения в вузе. Правильная организация самостоятельной работы позволяет обучающимся развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, способствует формированию навыков совершенствования профессионального мастерства.

Самостоятельная работа обучающихся во внеаудиторное время включает в себя подготовку к аудиторным занятиям, а также изучение отдельных тем, расширяющих и углубляющих представления обучающихся по разделам изучаемой дисциплины. Такая работа может предполагать проработку теоретического материала, работу с научной литературой, выполнение практических заданий, подготовку ко всем видам контрольных испытаний, выполнение творческих работ.

Учебно-методическое обеспечение для самостоятельной работы обучающихся по

дисциплине представлено в рабочей программе и включает в себя:

- рекомендуемую основную и дополнительную литературу;
- информационно-справочные и образовательные ресурсы Интернета;
- оценочные средства для проведения текущего контроля и промежуточной аттестации по дисциплине.

Конкретные рекомендации по планированию и проведению самостоятельной работы по дисциплине «Компьютерное моделирование» представлены в методических указаниях для обучающихся, а также в методических материалах фондов оценочных средств.

12. Фонд оценочных средств

Фонд оценочных средств, включающий перечень компетенций с указанием этапов их формирования, описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания, типовые контрольные задания и методические материалы является приложением к программе учебной дисциплины.