ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

1. Цель освоения дисциплины

Формирование систематизированных знаний в области теории вероятностей и математической статистики.

2. Место дисциплины в структуре ОПОП

Дисциплина «Теория вероятностей и математическая статистика» относится к вариативной части блока дисциплин.

Для освоения дисциплины «Теория вероятностей и математическая статистика» обучающиеся используют знания, умения, способы деятельности и установки, сформированные в ходе изучения дисциплин «Естественнонаучная картина мира», «Информационные технологии в образовании», «Основы математической обработки информации», «Педагогика», «Алгебра», «Вводный курс математики», «Геометрия», «Логика», «Математический анализ», прохождения практик «Научно-исследовательская работа», «Практика по получению первичных профессиональных умений и навыков». Освоение данной дисциплины является необходимой основой для последующего изучения дисциплин «Абстрактная и компьютерная алгебра», «Актуальные проблемы информатики и образования», «Информационные и коммуникационные технологии в образовании», «Информационные технологии в математике», «Информационные технологии в управлении образованием», «Исследование операций и методы оптимизации», «Компьютерная алгебра», «Основы психолого-педагогического исследования», «Физика», «Элементарная математика», прохождения практики «Преддипломная практика».

3. Планируемые результаты обучения

В результате освоения дисциплины выпускник должен обладать следующими компетенциями:

- способностью использовать естественнонаучные и математические знания для ориентирования в современном информационном пространстве (ОК-3);
- готовностью использовать систематизированные теоретические и практические знания для постановки и решения исследовательских задач в области образования (ПК-11).

В результате изучения дисциплины обучающийся должен:

знать

- основные понятия, формулы и формулировки утверждений комбинаторики и теории случайных событий;
- основные понятия, формулы и формулировки утверждений теории случайных величин;
- основные понятия, формулы и формулировки утверждений математической статистики;

уметь

- решать типовые задачи по комбинаторике и теории случайных событий;
- решать типовые задачи по теории случайных величин;
- решать типовые задачи по математической статистике;

владеть

- методами решения задач комбинаторики и теории вероятностей;
- методами решения задач в области случайных величин;
- методами решения задач в области математической статистики.

4. Общая трудоёмкость дисциплины и её распределение

количество зачётных единиц -3, общая трудоёмкость дисциплины в часах -108 ч. (в т. ч. аудиторных часов -54 ч.), распределение по семестрам -6, форма и место отчётности -3ачёт (6 семестр).

5. Краткое содержание дисциплины

Случайные события.

Элементы комбинаторики. Основные понятия теории вероятностей. Модели вероятностных пространств. Теоремы умножения и сложения вероятностей. Формула полной вероятности. Повторные события.

Случайные величины.

Дискретные случайные величины, закон распределения и числовые характеристики. Непрерывные случайные величины, закон распределения и числовые характеристики. Основные дискретные и непрерывные распределения. Предельные теоремы в теории вероятностей.

Элементы математической статистики.

Основные понятия математической статистики. Выборочный метод. Выборочный закон распределения. Теория оценивания. Проверка статистических гипотез. Простейшие случайные процессы.

6. Разработчик

Маглеванный Илья Иванович, профессор кафедры алгебры, геометрии и математического анализа ФГБОУ ВО "ВГСПУ",

Харламов Олег Сергеевич, доцент кафедры алгебры, геометрии и математического анализа ФГБОУ ВО "ВГСПУ".