МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Волгоградский государственный социально-педагогический университет» Факультет математики, информатики и физики

Кафедра физики, методики преподавания физики и математики, ИКТ

«УТВЕРЖДАЮ»

Проректор по учебной работе

Ю. А. Жадаев

2016 г.

Практикум решения физических задач

Программа учебной дисциплины

Направление 44.04.01 «Педагогическое образование» Магистерская программа «Физическое образование»

очная форма обучения

Обсуждена на заседании кафедры физики ИКТ	и, методик	и преподавания фи	зики и	математики,
«30» <u>06</u> 201 <u>6</u> г., протокол № <u>а</u>	2			
Заведующий кафедрой (полуись)	(3ab. K	сь в сперя «30» _ пфедрой)	<i>06</i> (дата)	_201 <u>6</u> г.
Рассмотрена и одобрена на заседании уче физики « 30 » 201 <u>6</u> г. , проток	ёного сове ол № <i>1</i> 2	та факультета мате	ематики	, информатики и
Председатель учёного совета <i>Т.К. Сис</i>	nnben	ер 8 « <u>30</u> »	<i>СС</i> (дата)	_201 <u>6</u> r.
Утверждена на заседании учёного совета «ЯЗ» _ ОЗ _ 201 € г., протокол № _ 2	а ФГБОУ I	ВО «ВГСПУ»		
Отметки о внесении изменений в прог	грамму:			
Лист изменений №	одпись)	(руководитель ОПО	 Π)	(дата)
Лист изменений №	одпись)	(руководитель ОПО		(дата)
Лист изменений №		E . 1		
(ne	одпись)	(руководитель ОПО	11)	(дата)
Разпаботники				

Клеветова Татьяна Валентиновна, доцент кафедры физики, методики преподавания физики и математики, ИКТ ФГБОУ ВО "ВГСПУ".

Программа дисциплины «Практикум решения физических задач» соответствует требованиям ФГОС ВО по направлению подготовки 44.04.01 «Педагогическое образование» (утверждён приказом Министерства образования и науки Российской Федерации от 21 ноября 2014 г. № 1505) и базовому учебному плану по направлению подготовки 44.04.01 «Педагогическое образование» (магистерская программа «Физическое образование»), утверждённому Учёным советом ФГБОУ ВПО «ВГСПУ» (от 30 марта 2015 г., протокол № 8).

1. Цель освоения дисциплины

Формирование готовности к теоретическому освоению современных методик и технологий решения физических задач и умений их применения для проектирования образовательной среды.

2. Место дисциплины в структуре ОПОП

Дисциплина «Практикум решения физических задач» относится к вариативной части блока дисциплин и является дисциплиной по выбору.

Профильной для данной дисциплины является педагогическая профессиональная деятельность.

Для освоения дисциплины «Практикум решения физических задач» обучающиеся используют знания, умения, способы деятельности и установки, сформированные в ходе изучения дисциплин «Методология и методы научного исследования», «Современный физический практикум», «Теоретическая физика».

Освоение данной дисциплины является необходимой основой для последующего изучения дисциплин «Решение задач повышенной трудности», «Теория и методика обучения физике», прохождения практики «Научно-исследовательская практика».

3. Планируемые результаты обучения

В результате освоения дисциплины выпускник должен обладать следующими компетенциями:

- способностью руководить исследовательской работой обучающихся (ПК-3);
- готовностью к разработке и реализации методик, технологий и приемов обучения, к анализу результатов процесса их использования в организациях, осуществляющих образовательную деятельность (ПК-4).

В результате изучения дисциплины обучающийся должен:

знать

- приемы решения физических задач;
- основные типы задач по оптике в структуре ЕГЭ;
- особенности организации исследовательской деятельности обучающихся при решении экспериментальных физических задач;

уметь

- применять аналитический и синтетический способы решения задач раздела "Электромагнетизм";
 - решать основные типы задач по оптике и квантовой физике;
- организовывать исследовательскую деятельность обучающихся при решении экспериментальных задач;

владеть

- алгогритмическими приемами решения комбинированных задач по механике;
- графическими приемами решения задач раздела "Молекулярная физика.
 Термодинамика";
- способами проектирования учебного процесса посредством решения экспериментальных задач.

4. Объём дисциплины и виды учебной работы

Dryw ywyddyraid mad arry	Всего	Семестры
Вид учебной работы	часов	2
Аудиторные занятия (всего)	20	20
В том числе:		
Лекции (Л)	_	_
Практические занятия (ПЗ)	10	10
Лабораторные работы (ЛР)	10	10
Самостоятельная работа	52	52
Контроль	_	_
Вид промежуточной аттестации		34
Общая трудоемкость часы	72	72
зачётные единицы	2	2

5. Содержание дисциплины

5.1. Содержание разделов дисциплины

No	Наименование раздела	Содержание раздела дисциплины
Π/Π	дисциплины	
1	Обзор основных методов	Алгоритмические приемы решения комбинированных
	решения физических задач	физических задач раздела «Механика» школьного
	повышенного уровня	курса физики профильного уровня. Аналитический и
	сложности по различным	синтетические способы решения задач раздела
	разделам курса физики	«Электромагнетизм» школьного курса физики
		профильного уровня.
2	Методические подходы	Графические задачи раздела «Молекулярная физика.
	подготовки учащихся к	Термодинамика» повышенного уровня сложности в
	единому государственному	структуре ЕГЭ. Задачи раздела «Оптика» в структуре
	экзамену на основе	ЕГЭ. Задачи квантовой и атомной физики
	решения физических задач	повышенного уровня сложности.
3	Методика решения	Система экспериментальных заданий в едином
	экспериментальных	государственном экзамене. Методика решения
	физических задач и их	экспериментальных задач физических олимпиад.
	место в системе общего	Демонстрационные экспериментальные задачи в
	физического образования	школьном курсе профильного уровня.
	профильного уровня	Экспериментальные задачи механики школьного курса
		физики профильного уровня. Экспериментальные
		задачи молекулярной физики и термодинамики
		школьного курса физики профильного уровня
		Экспериментальные задачи электромагнетизма
		школьного курса физики профильного уровня.
		Экспериментальные задачи оптики школьного курса
		физики профильного уровня

5.2. Количество часов и виды учебных занятий по разделам дисциплины

$N_{\underline{0}}$	Наименование раздела	Лекц.	Практ.	Лаб.	CPC	Всего
Π/Π	дисциплины		зан.	зан.		
1	Обзор основных методов	_	4	ı	16	20

	решения физических задач повышенного уровня сложности по различным разделам курса физики					
2	Методические подходы подготовки учащихся к единому государственному экзамену на основе решения физических задач	_	6	_	14	20
3	Методика решения экспериментальных физических задач и их место в системе общего физического образования профильного уровня	_	_	10	22	32

6. Перечень основной и дополнительной учебной литературы

6.1. Основная литература

1. Сборник контекстных задач по методике обучения физике [Электронный ресурс]: учебное пособие для студентов педагогических вузов/ Н.С. Пурышева [и др.].— Электрон. текстовые данные.— М.: Московский педагогический государственный университет, 2013.— 116 с.— Режим доступа: http://www.iprbookshop.ru/24023.— ЭБС «IPRbooks», по паролю.

6.2. Дополнительная литература

- 1. Красин М.С. Система эвристических приёмов решения задач по физике. Теория, методика, примеры [Электронный ресурс]: учебно-методическое пособие/ Красин М.С.— Электрон. текстовые данные.— Калуга: Калужский государственный университет им. К.Э. Циолковского, 2009.— 147 с.— Режим доступа: http://www.iprbookshop.ru/32845.— ЭБС «IPRbooks», по паролю.
- 2. Олимпиадные задачи по физике [Электронный ресурс]/ А.П. Кузнецов [и др.].— Электрон. текстовые данные.— Москва, Ижевск: Регулярная и хаотическая динамика, Ижевский институт компьютерных исследований, 2002.— 86 с.— Режим доступа: http://www.iprbookshop.ru/16581.— ЭБС «IPRbooks», по паролю.

7. Ресурсы Интернета

Перечень ресурсов Интернета, необходимых для освоения дисциплины:

1. Федеральный институт педагогических измерений – URL: http://www.fipi.ru.

8. Информационные технологии и программное обеспечение

Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем (при необходимости):

- 1. Офисный пакет Open Office.
- 2. Программное обеспечение для коммуникации.
- 3. Онлайн-сервис сетевых документов Google Docs. URL: http://docs.google.com.

9. Материально-техническая база

Для проведения учебных занятий по дисциплине «Практикум решения физических задач» необходимо следующее материально-техническое обеспечение:

- 1. Кабинет методики преподавания физики ауд 2359.
- 2. Лаборатория методики школьного физического эксперимен ауд. 2364.

10. Методические указания для обучающихся по освоению дисциплины

Дисциплина «Практикум решения физических задач» относится к вариативной части блока дисциплин и является дисциплиной по выбору. Программой дисциплины предусмотрено проведение практических занятий и лабораторных работ. Промежуточная аттестация проводится в форме зачета.

Практические занятия являются формой организации педагогического процесса, направленной на углубление научно-теоретических знаний и овладение методами работы, в процессе которых вырабатываются умения и навыки выполнения учебных действий в сфере изучаемой науки. Практические занятия предполагают детальное изучение обучающимися отдельных теоретических положений учебной дисциплины. В ходе практических занятий формируются умения и навыки практического применения теоретических знаний в конкретных ситуациях путем выполнения поставленных задач, развивается научное мышление и речь, осуществляется контроль учебных достижений обучающихся.

При подготовке к практическим занятиям необходимо ознакомиться с теоретическим материалом дисциплины по изучаемым темам — разобрать конспекты лекций, изучить литературу, рекомендованную преподавателем. Во время самого занятия рекомендуется активно участвовать в выполнении поставленных заданий, задавать вопросы, принимать участие в дискуссиях, аккуратно и своевременно выполнять контрольные задания.

Лабораторная работа представляет собой особый вид индивидуальных практических занятий обучающихся, в ходе которых используются теоретические знания на практике, применяются специальные технические средства, различные инструменты и оборудование. Такие работы призваны углубить профессиональные знания обучающихся, сформировать умения и навыки практической работы в соответствующей отрасли наук. В процессе лабораторной работы обучающийся изучает практическую реализацию тех или иных процессов, сопоставляет полученные результаты с положениями теории, осуществляет интерпретацию результатов работы, оценивает возможность применения полученных знаний на практике.

При подготовке к лабораторным работам следует внимательно ознакомиться с теоретическим материалом по изучаемым темам. Необходимым условием допуска к лабораторным работам, предполагающим использованием специального оборудования и материалов, является освоение правил безопасного поведения при проведении соответствующих работ. В ходе самой работы необходимо строго придерживаться плана работы, предложенного преподавателем, фиксировать промежуточные результаты работы для отчета по лабораторной работе.

Контроль за качеством обучения и ходом освоения дисциплины осуществляется на основе рейтинговой системы текущего контроля успеваемости и промежуточной аттестации студентов. Рейтинговая система предполагает 100-балльную оценку успеваемости студента по учебной дисциплине в течение семестра, 60 из которых отводится на текущий контроль, а 40 — на промежуточную аттестацию по дисциплине. Критериальная база рейтинговой оценки, типовые контрольные задания, а также методические материалы по их применению описаны в фонде оценочных средств по дисциплине, являющемся приложением к данной программе.

11. Учебно-методическое обеспечение самостоятельной работы

Самостоятельная работа обучающихся является неотъемлемой частью процесса обучения в вузе. Правильная организация самостоятельной работы позволяет обучающимся развивать умения и навыки в усвоении и систематизации приобретаемых знаний, обеспечивает высокий уровень успеваемости в период обучения, способствует формированию навыков совершенствования профессионального мастерства.

Самостоятельная работа обучающихся во внеаудиторное время включает в себя подготовку к аудиторным занятиям, а также изучение отдельных тем, расширяющих и углубляющих представления обучающихся по разделам изучаемой дисциплины. Такая работа может предполагать проработку теоретического материала, работу с научной литературой, выполнение практических заданий, подготовку ко всем видам контрольных испытаний, выполнение творческих работ.

Учебно-методическое обеспечение для самостоятельной работы обучающихся по дисциплине представлено в рабочей программе и включает в себя:

- рекомендуемую основную и дополнительную литературу;
- информационно-справочные и образовательные ресурсы Интернета;
- оценочные средства для проведения текущего контроля и промежуточной аттестации по дисциплине.

Конкретные рекомендации по планированию и проведению самостоятельной работы по дисциплине «Практикум решения физических задач» представлены в методических указаниях для обучающихся, а также в методических материалах фондов оценочных средств.

12. Фонд оценочных средств

Фонд оценочных средств, включающий перечень компетенций с указанием этапов их формирования, описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания, типовые контрольные задания и методические материалы является приложением к программе учебной дисциплины.