ОСНОВЫ МАТЕМАТИЧЕСКОЙ ОБРАБОТКИ ИНФОРМАЦИИ

1. Цель освоения дисциплины

Формирование знаний основ классических методов математической обработки информации и умений применять математический аппарат обработки данных теоретического и экспериментального исследования при решении учебно-профессиональных задач.

2. Место дисциплины в структуре ОПОП

Дисциплина «Основы математической обработки информации» относится к базовой части блока дисциплин.

Освоение данной дисциплины является необходимой основой для последующего изучения дисциплин «Естественнонаучная картина мира», «Информационные технологии в образовании», «Методика обучения физической культуре», «Биомеханика», «Взаимодействие школы и современной семьи», «Здоровьесберегающие технологии физической культуры», «Информационные технологии в квалиметрических исследованиях», «Методические особенности нормирования физических нагрузок», «Мониторинг в физическом воспитании учащихся и технологии его использования», «Основы биохимии спорта», «Основы метрологического контроля в физической культуре и спорте», «Основы экологических знаний», «Современные средства оценивания результатов обучения физической культуре», «Современные технологии оценки учебных достижений учащихся», «Спортивная метрология», «Технология дифференцированного физического воспитания учащейся молодежи», «Формирование культуры здоровья личности средствами физической культуры», прохождения практик «Практика по получению первичных умений и навыков научно-исследовательской деятельности», «Практика по получению профессиональных умений и опыта профессиональной деятельности», «Преддипломная практика».

3. Планируемые результаты обучения

В результате освоения дисциплины выпускник должен обладать следующими компетенциями:

- способностью использовать естественнонаучные и математические знания для ориентирования в современном информационном пространстве (ОК-3);
- способностью использовать современные методы и технологии обучения и диагностики (ПК-2).

В результате изучения дисциплины обучающийся должен:

знать

- широту и ограниченность применения математических методов к работе с информацией;
- основные математические понятия и методы решения типовых статистических задач на определение вероятности;
- определение и свойства моделей и алгоритмов;

уметь

- выполнять арифметические операции над числами в различных системах счисления и переводить из одной системы счисления в другую;
- вычислять в простейших случаях вероятности событий на основе подсчета числа исходов, осуществлять статистическое оценивание и прогноз;
- строить и исследовать простейшие математические модели;

владеть

- опытом в области математической логики и теории множеств;
- обобщенным методами анализа информации статистического характератеоретического и экспериментального исследования в сфере профессиональной деятельности;
- методами моделирования и алгоритмизации.

4. Общая трудоёмкость дисциплины и её распределение

количество зачётных единиц -2, общая трудоёмкость дисциплины в часах -72 ч. (в т. ч. аудиторных часов -8 ч., CPC-60 ч.), распределение по семестрам -1 курс, уст., форма и место отчётности -3 ачёт (1 курс, уст.).

5. Краткое содержание дисциплины

Математические основы работы с информацией.

Математика как часть общечеловеческой культуры. Обзор областей математики, лежащих в основе информатики. Источники получения информации. Понятие, свойства, представление информации. Количество информации. Системы счисления. Позиционные и не позиционные системы счисления. Преобразование чисел из одной системы счисления в другую. Простейшие арифметические действия в двоичной системе счисления. Восьмеричная и шестнадцатеричная системы счисления. их использование в информатике. Элементы математической логики. Основные логические операции. Законы математической логики. Элементы теории множеств. Операции над множествами.

Элементы теории вероятностей и статистики. Методы обработки информации. Вероятностные процессы. Элементы комбинаторики и теории вероятностей. Случайные величины. Распределение случайных величин (равномерное и нормальное). Понятия математического ожидания, дисперсии, среднеквадратичного отклонения, моды, медианы. Статистические методы обработки информации. Реализация методов математической обработки информации средствами ИКТ.

Моделирование и алгоритмизация.

Модель. Классификация моделей. Процесс моделирования. Алгоритм. Свойства алгоритмов. Формы представления алгоритмов. Примеры алгоритмов.

6. Разработчик

Попов Константин Алексеевич, доцент кафедры физики, методики преподавания физики и математики, ИКТ ФГБОУ ВО "ВГСПУ",

Петрова Татьяна Модестовна, профессор кафедры физики, методики преподавания физики и математики, ИКТ ФГБОУ ВО "ВГСПУ".