БИОХИМИЯ

1. Цель освоения дисциплины

Формирование системы представлений о химическом составе и свойствах веществ, образующих живую материю, реакциях их обмена, законов перехода химических процессов в физиологические функции и механизмов их регуляции.

2. Место дисциплины в структуре ОПОП

Дисциплина «Биохимия» относится к вариативной части блока дисциплин. Для освоения дисциплины «Биохимия» обучающиеся используют знания, умения, способы деятельности и установки, сформированные в ходе изучения дисциплин «Безопасность жизнедеятельности», «Возрастная анатомия, физиология и гигиена», «Неорганическая химия», «Основы медицинских знаний и здорового образа жизни», «Адаптация животных к условиям обитания», «Адаптация растений к условиям обитания», «Актуальные проблемы зоологии позвоночных животных», «Анатомия органов чувств», «Анатомия репродуктивной системы», «Анатомия человека», «Биогеография животных», «Биогеография растений», «Биологические основы сельского хозяйства», «Биотехнология», «Ботаника», «Генетика», «Гистология с основами эмбриологии», «Зоология», «Методы зоологических исследований», «Микробиология», «Многообразие высших растений Нижнего Поволжья (в пределах Волгоградской области)», «Молекулярная биология», «Общая экология», «Окружающая среда и здоровье человека», «Органическая химия», «Органография растений», «Основы биометрии», «Основы современной систематики беспозвоночных животных», «Основы современной систематики позвоночных животных», «Основы экологических знаний», «Охрана здоровья учащихся», «Педагогическая валеология», «Разнообразие беспозвоночных Нижне-Волжского региона», «Социальная экология», «Социальные аспекты здоровья», «Теория эволюции», «Физиология растений», «Физиология человека и животных», «Физиолого-гигиенический контроль здоровья», «Фитогистология», «Флора и растительность Нижнего Поволжья (в пределах Волгоградской области)», «Цитология», «Экология животных», «Экология растений», «Экология человека», «Эмбриология человека», прохождения практик «Педагогическая практика (воспитательная)», «Практика по получению первичных профессиональных умений и навыков (ботаника, зоология)», «Практика по получению первичных умений и навыков научно-исследовательской деятельности (ботаника, зоология, методика биологии)», «Практика по получению первичных умений и навыков научно-исследовательской деятельности (по физиологии растений и основам сельского хозяйства)», «Практика по получению первичных умений и навыков научно-исследовательской деятельности (эколого-генетическая)», «Практика по получению профессиональных умений и опыта профессиональной деятельности». Освоение данной дисциплины является необходимой основой для последующего изучения дисциплин «Биотехнология», «Происхождение органического мира», «Растения и стресс», «Современные проблемы макроэволюции», «Социальная экология», «Экологическая физиология растений», прохождения практик «Практика по получению профессиональных умений и опыта профессиональной деятельности», «Преддипломная практика».

3. Планируемые результаты обучения

В результате освоения дисциплины выпускник должен обладать следующими компетенциями:

- готовностью к обеспечению охраны жизни и здоровья обучающихся (ОПК-6);
- готовностью использовать знания в области теории и практики биологии для постановки и решения профессиональных задач (СК-1).

В результате изучения дисциплины обучающийся должен:

знать

- предмет, задачи, основные разделы собенности объекта изучения;
- химический состав, строение, свойства и функции важнейших классов биоорганических соединений:
- химические основы процессов обмена веществ и энергии;

уметь

- проводить качественный и количественный анализ биоорганических соединений;
- составлять формулы и уравнения химических реакций, которые лежат в основе процессов синтеза и распада биоорганических веществ;

владеть

- навыками поиска и отбора из различных источников научной информации по разделам биохимии;
- навыком прогнозирования возможности повреждающего действия различных факторов окружающей среды на биоорганические соединения;
- лабораторными навыками и умениями при работе с биологическим материалом.

4. Общая трудоёмкость дисциплины и её распределение

количество зачётных единиц -2, общая трудоёмкость дисциплины в часах -72 ч. (в т. ч. аудиторных часов -20 ч., СРС -43 ч.), распределение по семестрам -5 курс, зима, 5 курс, лето, форма и место отчётности - экзамен (5 курс, лето).

5. Краткое содержание дисциплины

Введение в курс биологической химии. Химический состав живых организмов. Предмет и задачи биохимии. Основные разделы биохимии. Особенности объекта изучения. История развития, достижения биохимии. Роль отечественных ученых в развитии биохимии. Особенности применения системного подхода к пониманию принципов функционирования живых систем. Методы биохимии. Характеристика основных классов химических соединений, входящих в состав живой материи их содержание в организме. Пластические и энергетические вещества. Биоактивные соединения. Современные представления о составе и тонкой структуре клетки.

Основные классы биоорганических соединений.

Белки. Элементарный состав белков. Методы выделения и очистки. Аминокислотный состав белков. Пептиды. Полипептидная теория строения белков. Характеристика связей стабилизирующих первичную структуру, ее значение, видовая специфичность. Методы установления первичной структуры белков. Автоматические и молекулярно-генетические методы определения первичной структуры белков. Синтез пеептидов по Меррифилду. Понятие о белках как высокомолекулярных биополимерах. Структурная организация белков. Характеристика вторичной третичной и четвертичной структур. Биологические функции белков. Понятие о денатурации белков. Денатурирующие агенты. Их природа. Экологический фактор. Физико- химические свойства белков. Классификации белков, характеристика представителей основных групп. Компьютерное молекулярное моделирование белков. Нуклеиновые кислоты. История открытия и изучения нуклеиновых кислот. Химический состав. Нуклеотиды, нуклеозиды: строение, номенклатура, биологическая роль Понятие о строении нуклеиновых кислот. Типы нуклеиновых кислот. Сравнительная характеристика ДНК и РНК. Функции ДНК. Соотношения между ДНК и геном. Характеристика видов РНК и их функции. Проект «Геном человека». Основы

молекулярной генетики и генной инженерии. Возможности генной инженерии в биологии и медицине. Углеводы. Общая характеристика углеводов и их классификация. Сложные углеводы. Олигосахариды (дисахариды, трисахариды и т.д.) Типы строения, свойства, важнейшие представители (мальтоза, сахароза, целлобиоза, лактоза и др.). Полисахариды: классификация (гомополисахариды, гетерополисахариды), химическая структура, свойства. Важнейшие представители функции, выполняемые сложными углеводами в организме. Липиды. Характеристика классов липидов: строение, биологическая роль. Триглицериды. Воски. Представители. Образование стероидов (гормоны). Характеристика фосфолипидов. Роль липидов в структурировании биологических мембран. Ферменты. История открытия и изучения ферментов. Сходства и отличия ферментов и катализаторов небелковой природы. Строение и физико-химические свойства ферментов. Функционально-активные центры ферментов. Гипотезы взаимодействия с субстратами. Модель Э. Фишера и Кошленда. Механизмы действия ферментов. Кинетика ферментативных реакций. Константа Михаэлиса-Ментена. Зависимость скорости ферментативных реакций от температуры, рН, концентрации субстрата и фермента. Роль коферментов и кофакторов в ферментативных реакциях. Активаторы и ингибиторы ферментов. Механизмы ингибирования. Изоферменты. Мультимолекулярные ферментные системы. Аллостерические ферменты. Номенклатура и классификация ферментов. Шифр ферментов. Характеристика классов ферментов. Области применения ферментов. Достижения современной ферменталогии.

Обмен веществ и энергии в живых системах.

Общие представления об обмене веществ. Обмен веществ и энергии – неотъемлемое свойство живых систем. Виды и стороны обмена веществ. Характеристика факторов, влияющих на интенсивность обменных процессов. Энергетика обмена веществ. Энергетический обмен. Тканевое дыхание и биологическое окисление. Дыхательная цепь, характеристика ферментов и коферментов дыхательной цепи. Побочные пути тканевого дыхания, биологическая роль. Микросомальное окисление, значение. Макроэргические соединения. Гипоэнергетические состояния. Понятие об уровне свободной энергии в органическом соединении. Макроэргические связи и макроэргические соединения. Роль АТФ в энергетическом обмене. Регуляция обмена веществ. Уровни регуляции обмена веществ в организме. Гормоны, классификация, механизм действия. Синтез гормонов шитовидной железы, катехоламинов. Тканевые гормоны, классификация, отличие от гормонов. Витамины, строение, классификация, роль в обмене веществ. Участие витаминов в построении коферментов. Авитаминозы, гиповитаминозы. Обмен белков. Распад белков и обмен аминокислот как источники возникновения биологически активных соединений. Пути и механизмы синтеза белков в природе. Матричная система биосинтеза белков. Этапы биосинтеза белка. Механизмы инициации, элонгации, терминации и процессинга транскрипции. Механизмы этапа трансляции. Посттрансляционные изменения. Строение и модели работы рибосом. Механизмы регуляции биосинтеза белка. Теория жакоба и Моно. Мультиэнзимный механизм биосинтеза белка. Обмен нуклеиновых кислот. Распад нуклеиновых кислот до свободных нуклеотидов при участии нуклеаз. Распад нуклеотидов, нуклеозидов и азотистых оснований. Биосинтез нуклеозидмоно-, нуклеозидди- и нуклеозидтрифосфатов.. Механизм биосинтеза (репликации) ДНК. Биосинтез РНК (транскрипция). Обмен углеводов. Пути распада полисахаридов и олигосахаридов. Катаболизм моносахаридов. Гликолиз и гликогенолиз. Значение и регуляция процессов. Обмен гюкозо-6-фосфата (дихотомический и апотомический пути, их соотношение в организме). Обмен пировиноградной кислоты. Окислительное декарбоксилирование пировиноградной кислоты. Цикл ди- и трикарбоновых кислот. Биологическая роль. Обмен липидов. Гидролиз жиров. Обмен глицерина. Механизм (- и (-окисления жирных кислот. Биосинтез высших жирных кислот. Механизм биосинтеза триглицеридов. Энергетический баланс распада триглицеридов. Биологическое окисление. История развития представлений о механизмах биологического окисления. Классификация процессов биологического окисления. Механизм окислительного фосфорилирования. Субстратное фосфорилирование. Свободное окисление. Обмен воды и минеральных веществ. Роль воды в организме. Вода

внеклеточная и внутриклеточная. Регуляция обмена воды. Минеральные вещества: макроэлементы, микроэлементы и ультрамикроэлементы. Роль Na+, K+, Ca2+, Cl-, Mg2+, P3+ и других минеральных веществ в организме. Регуляция минерального обмена. Нарушения минерального обмена. Общие пути катаболизма. Взаимосвязь обмена белков (аминокислот), липидов (ВЖК и глицерин), углеводов (моносахариды) и нуклеотидов. Ключевые метаболиты обмена веществ: пировиноградная кислота, ацетил-КоА, глицерин, метаболиты цикла трикарбоновых кислот.

6. Разработчик

Завьялова Галина Евгеньевна, кандидат биологических наук, доцент кафедры химии и методики преподавания химии ФГБОУ ВПО «ВГСПУ».